首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

2.
The chemical reactions of a family of tetradentate pyridyl/imine ligands, L1, L2, and L3 (L1=[ N, N'-bis(2-pyridinylmethylene)]ethane-1,2-diamine; L2=[ N, N'-bis(pyridin-2-yl)benzylidene]ethane-1,2-diamine; L3=[ N, N'-bis(2-pyridinylmethylene)]propane-1,3-diamine), with Ni (II) in the presence of various pseudohalides (N3(-), SCN(-), and NCO(-)) have served to prepare six different complexes, [Ni 2(L1)2(N3)2](ClO4)2.H2O (1), [Ni 2(L2)2(N3)2](ClO4)2 (2), [Ni2(L2)2(NCS)4] (3), [Ni2(L2)2(NCO) 2](ClO4)2 (4), [Ni2(L3)2(NCO)2](ClO4)2 (5), and [Ni(L3)(N 3)2] (6), which have been characterized by X-ray crystallography. Interestingly, four of these complexes are dinuclear and exhibit end-on (EO) pseudohalide bridges (1, 2, 4, and 5), one is dinuclear and bridged exclusively by the tetradentate ligand (3), and one is mononuclear (6). The bulk magnetization of the complexes bridged by EO pseudohalides has been studied, revealing these ligands to mediate ferromagnetic coupling between the Ni(II) ions, with modeled coupling constants, J, of +31.62 (1), +28.42 (2), +2.81 (4), and +1.72 (5) cm(-1) (where the convention H=-2JS1S2 was used). The striking difference in the coupling intensity between N3(-) and NCO(-) has prompted an investigation by means of density functional theory calculations, which has confirmed the experimental results and provided insight into the reasons for this observation.  相似文献   

3.
In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex [{Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-))](2+) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a [Cu(I)(L(N3S))](+)/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.  相似文献   

4.
A series of novel mixed ligand dinickel complexes of the type [Ni(II)(2)L(μ-L')](+), where L' is a tetrahedral oxo-alkoxo vanadate (L' = [O(2)V(V)(OR)(2)](-), R = H or alkyl) and L a macrocyclic N(6)S(2) supporting ligand, have been prepared, and their esterification reactivity has been studied. The orthovanadate complex [Ni(2)L(μ-O(2)V(OH)(2))](+) (2), prepared by reaction between [Ni(2)L(μ-Cl)]ClO(4) with Na(3)VO(4) and a phase transfer reagent in CH(3)CN, reacts smoothly with MeOH and EtOH forming the vanadate diesters [Ni(2)L(μ-O(2)V(OMe)(2))](+) (3) and [Ni(2)L(μ-O(2)V(OEt)(2))](+) (4). The dialkyl orthovanadate esters in 3 and 4 are readily transesterified with mono- and difunctional alcohols. Complex 3 can also be generated from 4 by transesterification with MeOH. Complexes 3 and 4 react with diols (ethylene glycol, propylene glycol and diethylene glycol) as well to afford the complexes [Ni(2)L(μ-O(2)V(OH)(OCH(2)CH(2)OH))](+) (5), [Ni(2)L(μ-O(2)V(OCH(2))(2)CH(2))](+) (6), and [Ni(2)L(μ-O(2)V(OCH(2)CH(2))(2)O)] (7). The crystal structures of the tetraphenylborate salts of complexes 3-7 reveal in each case four-coordinate O(2)V(V)(OR)(2)(-) groups bonded in a μ(1,3)-bridging mode to generate trinuclear complexes with a central N(3)Ni(μ-S)(2)(μ(1,3)-O(2)V(OR)(2))NiN(3) core. The stabilization of the four-coordinate V(V)O(2)(OR)(2)(-) moieties is a consequence of both the two-point coordinative fixation to and the steric protection of the bowl-shape binding pocket of the [Ni(2)L](2+) fragment. Cyclic voltammetry experiments reveal that the encapsulated vanadate esters are not reduced in a potential window of -2.0 to +2.5 V vs SCE. The spins of the nickel(II) (S(i) = 1 ions) in 3 are weakly ferromagnetically coupled (J = +23 cm(-1), (H = -2JS(1)S(2))) to produce an S = 2 ground state.  相似文献   

5.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

6.
A phosphorus supported multisite coordinating ligand P(S)[N(Me)N=CH-C(6)H(4)-o-OH](3) (2) was prepared by the condensation of the phosphorus tris hydrazide P(S)[N(Me)NH(2)](3) (1) with o-hydroxybenzaldehyde. The reaction of 2 with M(OAc)(2).xH(2)O (M = Mn, Co, Ni, x = 4; M = Zn, x = 2) afforded neutral trinuclear complexes [P(S)[N(Me)N=CH-C(6)H(4)-o-O](3)](2)M(3) [M = Mn (3), Co (4), Ni (5), and Zn (6)]. The X-ray crystal structures of compounds 2-6 have been determined. The structures of 3-6 reveal that the trinculear metal assemblies are nearly linear. The two terminal metal ions in a given assembly have an N(3)O(3) ligand environment in a distorted octahedral geometry while the central metal ion has an O(6) ligand environment also in a slightly distorted octahedral geometry. In all the complexes, ligand 2 coordinates to the metal ions through three imino nitrogens and three phenolate oxygens; the latter act as bridging ligands to connect the terminal and central metal ions. The compounds 2-6 also show intermolecular C-H...S=P contacts in the solid-state which lead to the formation of polymeric supramolecular architectures. The observed magnetic data for the (s = 5/2)3 L(2)(Mn(II))(3) derivative, 3, show an antiferromagnetic nearest- and next-nearest-neighbor exchange (J = -4.0 K and J' = -0.15 K; using the spin Hamiltonian H(HDvV) = -2J(S(1)S(2) + S(2)S(3)) - 2J'S(1)S(3)). In contrast, the (s = 1)(3) L(2)(Ni(II))(3) derivative, 5, displays ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions (J = 4.43 K and J' = -0.28 K; H = H(HDvV)+ S(1)DS(1) + S(2)DS(2)+ S(3)DS(3)). The magnetic behavior of the L(2)(Co(II))(3) derivative, 4, reveals only antiferromagnetic exchange analogous to 3 (J = -4.5, J' = -1.4; same Hamiltonian as for 3).  相似文献   

7.
Four tetrameric nickel(II) pseudohalide complexes have been synthesized and structurally, spectroscopically, and magnetically characterized. Compounds 1-3 are isostructural and exhibit the general formula [Ni(2)(dpk·OH)(dpk·CH(3)O)(L)(H(2)O)](2)A(2)·2H(2)O, where dpk = di-2-pyridylketone; L = N(3)(-), and A = ClO(4)(-) for 1, L = NCO(-) and A = ClO(4)(-) for 2, and L = NCO(-) and A = NO(3)(-) for 3. The formula for 4 is [Ni(4)(dpk·OH)(3) (dpk·CH(3)O)(2)(NCO)](BF(4))(2)·3H(2)O. The ligands dpk·OH(-) and dpk·CH(3)O(-) result from solvolysis and ulterior deprotonation of dpk in water and methanol, respectively. The four tetramers exhibit a dicubane-like core with two missing vertexes where the Ni(II) ions are connected through end-on pseudohalide and oxo bridges. Magnetic measurements showed that compounds 1-4 are ferromagnetic. The values of the exchange constants were determined by means of a theoretical model based on three different types of coupling. Thus, the calculated J values (J(1) = J(2), J(3), and D) were 5.6, 11.8, and 5.6 cm(-1) for 1, 5.5, 12.0, and 5.6 cm(-1) for 2, 6.3, 4.9, and 6.2 cm(-1) for 3, and (J(1), J(2), J(3), and D) 6.9, 7.0, 15.2, and 4.8 cm(-1) for 4.  相似文献   

8.
A series of dinickel(II) complexes with the 24-membered macrocyclic hexaazadithiophenol ligand H(2)L(Me) was prepared and examined. The doubly deprotonated form (L(Me))(2-) forms complexes of the type [(L(Me))Ni2II(mu-L')](n+) with a bioctahedral N(3)Ni(II)(mu-SR)(2)(mu-L')Ni(II)N(3) core and an overall calixarene-like structure. The bridging coordination site L' is accessible for a wide range of exogenous coligands. In this study L'=NO(3)(-), NO(2)(-), N(3)(-), N(2)H(4), pyrazolate (pz), pyridazine (pydz), phthalazine (phtz), and benzoate (OBz). Crystallographic studies reveal that each substrate binds in a distinct fashion to the [(L(Me))Ni(2)](2+) portion: NO(2)(-), N(2)H(4), pz, pydz, and phtz form mu(1,2)-bridges, whereas NO(3)(-), N(3)(-), and OBz(-) are mu(1,3)-bridging. These distinctive binding motifs and the fact that some of the coligands adopt unusual conformations is discussed in terms of complementary host-guest interactions and the size and form of the binding pocket of the [(L(Me))Ni(2)](2+) fragment. UV/Vis and electrochemical studies reveal that the solid-state structures are retained in the solution state. The relative stabilities of the complexes indicate that the [(L(Me))Ni(2)](2+) fragment binds anionic coligands preferentially over neutral ones and strong-field ligands over weak-field ligands. Secondary van der Waals interactions also contribute to the stability of the complexes. Intramolecular ferromagnetic exchange interactions are present in the nitrito-, pyridazine-, and the benzoato-bridged complexes where J=+6.7, +3.5, and +5.8 cm(-1) (H=-2 JS(1)S(2), S(1)=S(2)=1) as indicated by magnetic susceptibility data taken from 300 to 2 K. In contrast, the azido bridge in [(L(Me))Ni(2)(mu(1,3)-N(3))](+) results in an antiferromagnetic exchange interaction J=-46.7 cm(-1). An explanation for this difference is qualitatively discussed in terms of bonding differences.  相似文献   

9.
The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.  相似文献   

10.
A series of heterobimetallic complexes of the type [Fe(III)M(II)L(&mgr;-OAc)(OAc)(H(2)O)](ClO(4)).nH(2)O (2-5) and [{Fe(III)Co(III)L(&mgr;-OAc)(OAc)}(2)(&mgr;-O)](ClO(4))(2).3H(2)O (6) where H(2)L is a tetraaminodiphenol macrocyclic ligand and M(II) = Zn(2), Ni(3), Co(4), and Mn(5) have been synthesized and characterized. The (1)H NMR spectrum of 6 exhibits all the resonances between 1 and 12 ppm. The IR and UV-vis spectra of 2-5 indicate that in all the cases the metal ions have similar coordination environments. A disordered crystal structure determined for 3 reveals the presence of a (&mgr;-acetate)bis(&mgr;-phenoxide)-Ni(II)Fe(III) core, in which the two metal ions have 6-fold coordination geometry and each have two amino nitrogens and two phenolate oxygens as the in-plane donors; aside from the axial bridging acetate, the sixth coordination site of nickel(II) is occupied by the unidentate acetate and that of iron(III) by a water molecule. The crystal structure determination of 6 shows that the two heterobinuclear Co(III)Fe(III) units are bound by an Fe-O-Fe linkage. 6 crystallizes in the orthorhombic space group Ibca with a = 17.577(4) ?, b = 27.282(7) ?, c = 28.647(6) ?, and Z = 8. The two iron(III) centers in 6 are strongly antiferromagnetically coupled, J = -100 cm(-1) (H = -2JS(1).S(2)), whereas the other two S(1) = S(2) = (5)/(2) systems, viz. [Fe(2)(III)(HL)(2)(&mgr;-OH)(2)](ClO(4))(2) (1) and the Fe(III)Mn(II) complex (5), exhibit weak antiferromagnetic exchange coupling with J = -4.5 cm(-1) (1) and -1.8 cm(-1) (5). The Fe(III)Ni(II) (3) and Fe(III)Co(II) (4) systems, however, exhibit weak ferromagnetic behavior with J = 1.7 cm(-1) (3) and 4.2 cm(-1) (4). The iron(III) center in 2-5 exhibits quasi-reversible redox behavior between -0.44 and -0.48 V vs Ag/AgCl associated with reduction to iron(II). The oxidation of cobalt(II) in 4 occurs quasi-reversibly at 0.74 V, while both nickel(II) and manganese(II) in 3 and 5 undergo irreversible oxidation at 0.85 V. The electrochemical reduction of 6 leads to the generation of 4.  相似文献   

11.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

12.
The properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L) and 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) have been synthesized. The X-ray structural analysis of {[Co(ClO4)(H2O)(L)][Co(H2O)2(L)]}(ClO4)3 shows two different metal sites in octahedral coordination. The EPR spectra of powdered samples of this compound are typical of distorted six-coordinated Co(II) ions in a high-spin (S=3/2) configuration, with the ground state being S=1/2 (g1=5.20, g2=3.20, g3=1.95). The EPR spectrum of [Cu(ClO4)(L)](ClO4) was simulated assuming an axial g tensor (g1=g2=2.043, g3=2.145), while that of [Cu(ClO4)(L1)](ClO4) slightly differs from an axial symmetry (g1=2.025, g2=2.060, g3=2.155). These results are compatible with a Cu(II) ion in square-pyramidal coordination with N2S2 as basal ligands. Single-crystal EPR experiment performed on [Cu(ClO4)(L1)](ClO4) allowed determining the eigenvalues of the molecular g tensor associated with the copper site, as well as the two possible orientations for the tensor. On the basis of symmetry arguments, an assignment in which the eigenvectors are nearly along the Cu(II)-ligand bonds is chosen.  相似文献   

13.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

14.
The bis-pyridine tridentate ligands (6-R-2-pyridylmethyl)-(2-pyridylmethyl) benzylamine (RDPMA, where R = CH(3), CF(3)), (6-R-2-pyridylmethyl)-(2-pyridylethyl) benzylamine (RPMPEA, where R = CH(3), CF(3)), and the bidentate ligand di-benzyl-(6-methyl-2-pyridylmethyl)amine (BiBzMePMA) have been synthesized and their copper(I) complexes oxidized in a methanol solution to afford self-assembled bis-micro-methoxo-binuclear copper(II) complexes (1, 2, 4, 6) or hydroxo- binuclear copper(II) complexes (3). Oxidation of the nonsubstituted DPMA (R = H) in dichloromethane gives a chloride-bridged complex (5). The crystal structures for [Cu(MeDPMA)(MeO)](2)(ClO(4))(2) (1), [Cu(RPMPEA)(MeO)](2)(ClO(4))(2) (for 2, R= Me, and for 4, R = CF(3)), [Cu(BiBzMePMA)(MeO)](2)(ClO(4))(2) (6), [Cu(FDPMA)(OH)](2)(ClO(4))(2) (3), and [Cu(DPMA)(Cl)](2)(ClO(4))(2) (5) have been determined, and their variable-temperature magnetic susceptibility has been measured in the temperature range of 10-300 K. The copper coordination geometries are best described as square pyramidal, except for 6, which is square planar, because of the lack of one pyridine ring in the bidentate ligand. In 1-4 and 6, the basal plane is formed by two pyridine N atoms and two O atoms from the bridging methoxo or hydroxo groups, whereas in 5, the bridging Cl atoms occupy axial-equatorial sites. Magnetic susceptibility measurements show that the Cu atoms are strongly coupled antiferromagnetically in the bis-methoxo complexes 1, 2, 4, and 6, with -2J > 600 cm(-)(1), whereas for the hydroxo complex 3, -2J = 195 cm(-)(1) and the chloride-bridged complex 5 shows a weak ferromagnetic coupling, with 2J = 21 cm(-)(1) (2J is an indicator of the magnetic interaction between the Cu centers).  相似文献   

15.
Kou HZ  Zhou BC  Gao S  Liao DZ  Wang RJ 《Inorganic chemistry》2003,42(18):5604-5611
A series of cyano-bridged Ni(II)-Cr(I/III) complexes have been synthesized by the reactions of hexaazacyclic Ni(II) complexes with [Cr(CN)(6)](3-) or [Cr(CN)(5)(NO)](3-). Using the tetravalent Ni(II) complex [Ni(H(2)L(2))](4+) (L(2) = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane), one-dimensional chainlike complexes were produced and subject to magnetic studies, affording the intermetallic magnetic exchange constants of J(1) = +0.23 cm(-1) and J(2) = +8.4 cm(-1) for the complex [Ni(H(2)L(2))][Cr(CN)(5)(NO)]ClO(4).5H(2)O (1) and of J = +5.9 cm(-1) for the complex [Ni(H(2)L(2))](4)[Cr(CN)(6)](5)OH.15H(2)O (2). X-ray diffraction analysis shows that complex 1 has a zigzag chain structure, whereas complex 2 consists of a branched chain structure. Complex 2 exhibits antiferromagnetic ordering at 8.0 K (T(N)). When an octahedral Ni(II) complex cis-[NiL(3)(en)](2+) (en = 1,2-ethylenediamine, L(3) = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) was used for the synthesis, the common 2D honeycomb-layered complex [NiL(3)](3)[Cr(CN)(5)(NO)](2).8H(2)O (3) was obtained, which has a T(N) value of 3.3 K. Below T(N), a metamagnetic behavior was observed in complexes 2 and 3.  相似文献   

16.
The pentadentate ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane (L1) has been synthesized by the high dilution cyclization of 1-oxa-4,8-diazacyclododecane ([10]aneN(2)O) (1) with 1,3-bis(alpha-chloroacetamido)propane (2) and subsequent reduction of the diamide intermediate. The structure [Ni(L1)(ClO(4))](ClO(4)) (P2(1)/c (no. 14), a = 8.608(3), b = 16.618(3), c = 14.924(4) A, beta = 91.53(3) degrees converged at R = 0.050 (R(w) = 0.046) for 307 parameters using 2702 reflections with I > 2sigma(I). For the nickel(II) complex of the (monodeprotonated) precursor diamide ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane-3,9-dione (H(2)L2), [Ni(HL2)](ClO(4)) (Pbca (no. 61), a = 15.1590(3), b = 13.235(2), c = 18.0195(6) A), the structure converged at R = 0.045 (R(w) = 0.038) for 265 parameters using 1703 reflections with I > 3sigma(I). In the reduced system, the cyclam-based ligand adopts a trans-III configuration. The [Ni(L1)(ClO(4))](2+) ion is pseudooctahedral with the Ni-O(ether) 2.094(3) A distance shorter than the Ni-O(perchlorate) 2.252(4) A. The nickel(II) and nickel(III) complexes are six-coordinate in solution. Oxidation of [Ni(L1)(OH(2))](2+) with K(2)S(2)O(8) in aqueous media yielded an axial d(7) Ni(III) species (g( perpendicular) = 2.159 and g( perpendicular) = 2.024 at 77 K). The [Ni(L1)(solv)](2+) ion in CH(3)CN showed two redox waves, Ni(II/I) (an irreversible cathodic peak, E(p,c) = -1.53 V) and Ni(III/II) (E(1/2) = 0.85 V (reversible)) vs Ag/Ag(+). The complex [Ni(HL2)](ClO(4)) displays square-planar geometry with monodeprotonation of the ligand. The ether oxygen is not coordinated. Ni-O(3) = 2.651(6) A and Ni-O(3a) = 2.451(12) A, respectively. The Ni(III/II) oxidation at E(1/2) = 0.24 V (quasi-reversible) vs Ag/Ag(+) is considerably lower than the saturated system. The kinetics of Cl(-) substitution at [Ni(L1)(solv)](3+) are pH dependent. Detachment of the ether oxygen atom is proposed, with insertion of a protonated water molecule which deprotonates at a pK(a) more acidic than in the corresponding cyclam complex. Mechanistic implications are discussed.  相似文献   

17.
Three polynuclear complexes, [NiNa(μ(1,1,1)-N(3))(μ-hmb)(2)(DMF)](2), (1), [Ni(4)(μ(3)-OMe)(4)(heb)(4)(MeOH)(1.05)(H(2)O)(2.95)], (2) and [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)]·(ClO(4))(3) (3) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde), were prepared by reaction of the appropriate ligand with nickel(II) perchloride hexahydrate under solvothermal conditions. All compounds were characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Compound 1 exhibits a centrosymmetric heterotetranuclear cluster which represents the first nickel complex to possess two connected face-sharing cubes structure {Ni(2)Na(2)N(2)O(4)}. Compound 2 has a tetranuclear Ni cluster with a cubane topology in which the Ni(II) and the oxygen atoms from the methanol ligands occupying alternate vertices of the cube. Compound 3 consisits of a mixed-valence [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)](3+) subunits and it represents the first nickel {Ni(II)(6)Ni(III)} complex to possess a planar hexagonal disc-like structure. The results show that the minor ligand modifications or solvent change have a key role in the structural control of the self-assembly process. Magnetic properties of 1-3 in the 300-2 K have been discussed. The {Ni(2)Na(2)} (1) and {Ni(4)} (2) core display dominant ferromagnetic interactions from the nature of the binding modes through μ(3)-N(3)(-) or μ(3)-OCH(3)(-), while {Ni(II)(6)Ni(III)} core (3) displays dominant anti-ferromagnetic interactions from the nature of the binding modes through μ(3)-OH(-).  相似文献   

18.
Chen CH  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(5):2307-2316
The shift of the IR nu(S)(-)(H) frequency to lower wavenumbers for the series of complexes [Ni(II)(L)(P-(o-C6H4S)2(o-C6H4SH))]0/1- (L = PPh3 (1), Cl (6), Se-p-C6H4-Cl (5), S-C4H3S (7), SePh (4)) indicates that a trend of increasing electronic donation of the L ligands coordinated to the Ni(II) center promotes intramolecular [Ni-S...H-S] interactions. Compared to the Ni...S(H) distance, in the range of 3.609-3.802 A in complexes 1 and 4-7, the Ni...S(CH3) distances of 2.540 and 2.914 A observed in the [Ni(II)(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] complexes (8a and 8b, two conformational isomers with the chemical shift of the thioether methyl group at delta 1.820 (-60 degrees C) and 2.109 ppm (60 degrees C) (C4D8O)) and the Ni...S(CH3) distances of 3.258 and 3.229 A found in the [Ni(II)(L)(P(o-C6H4S)2(o-C6H4-SCH3))]1- complexes (L = SPh (9), SePh (10)) also support the idea that the pendant thiol protons of the Ni(II)-thiol complexes 1/4-7 were attracted by both the sulfur of thiolate and the nickel. The increased basicity (electronic density) of the nickel center regulated by the monodentate ligand attracted the proton of the pendant thiol effectively and caused the weaker S...H bond. In addition, the pendant thiol interaction modes in the solid state (complexes 1a and 1b, Scheme 1) may be controlled by the solvent of crystallization. Compared to complex 1a, the stronger intramolecular [Ni-S...H-S] interaction (or a combination of [Ni-S...H-S]/[Ni...H-S] interactions) found in complexes 4-7 led to the weaker S-H bond strength and accelerated the oxidation (by O2) of complexes 4-7 to produce the [Ni(Y)(L)(P(o-C6H4S)3)]1- (L = Se-p-C6H4-Cl (11), SePh (12), S-C4H3S (13)) complexes.  相似文献   

19.
The ligand 1,4,7-tris(acetophenoneoxime)-1,4,7-triazacyclononane (H(3)L) has been synthesized and its coordination properties toward Cu(II), Ni(II), Co(II), and Mn(II) in the presence of air have been investigated. Copper(II) yields a mononuclear complex, [Cu(H(2)L)](ClO(4)) (1), cobalt(II) and manganese(II) ions yield mixed-valence Co(III)(2)Co(II) (2a) and Mn(II)(2)Mn(III) (4) complexes, whereas nickel(II) produces a tetranuclear [Ni(4)(HL)(3)](2+) (3) complex. The complexes have been structurally, magnetochemically, and spectroscopically characterized. Complex 3, a planar trigonal-shaped tetranuclear Ni(II) species, exhibits irregular spin-ladder. Variable-temperature (2-290 K) magnetic susceptibility analysis of 3 demonstrates antiferromagnetic exchange interactions (J = -13.4 cm(-1)) between the neighboring Ni(II) ions, which lead to the ground-state S(t) = 2.0 owing to the topology of the spin-carriers in 3. A bulk ferromaganetic interaction (J = +2 cm(-1)) is prevailing between the neighboring high-spin Mn(II) and high-spin Mn(III) ions leading to a ground state of S(t) = 7.0 for 4. The large ground-state spin value of S(t) = 7.0 has been confirmed by magnetization measurements at applied magnetic fields of 1, 4 and 7 T. A bridging monomethyl carbonato ligand formation occurs through an efficient CO(2) uptake from air in methanolic solutions containing a base in the case of complex 4.  相似文献   

20.
Two new Co(II) and Ni(II) complexes exhibiting DNA cytotoxic activities with 3-(2-pyridyl)pyrazole-based ligand, [Co(L)(3)](ClO(4))(2) (1) and [Ni(L)(3)](ClO(4))(2) (2) (L=1-[3-(2-pyridyl)-pyrazol-1-ylmethyl]-naphthalene) were synthesized and structurally characterized. Both 1 and 2 crystallized in the monoclinic system, space group P2(1)/c, for 1, a=12.8324(8), b=12.1205(8), c=33.27(2) A, beta=93.92(3) degrees and Z=4; for 2, a=12.8764(3), b=12.1015(3), c=33.2415(9) A, beta=93.998(1) degrees and Z=4. Among them, the Co(II) and Ni(II) ions were all coordinated by six N donors from three distinct L ligands. In addition, the cytotoxic activities of 1, 2 and L in vitro were evaluated against three different cancer cell lines HL-60 (human leukemia), BGC-823 (stomach cancer) and MDA-MB-435 (mammary cancer), respectively. The results showed that 1 exhibited significantly high cytotoxic activities against HL-60 and moderate activities against BGC-823 and MDA-MB-435. In order to further investigate the relationships between structures and DNA-binding behaviors of these complexes, the interactions of 1, 2 and L with calf thymus DNA (CT-DNA) were then subjected to thermal denaturation, viscosity measurements and spectrophotometric methods. The results indicated that 1 and 2 intercalated with DNA via L ligand. The intrinsic binding constants of 1, 2 and L with DNA were 1.6x10(4), 5.6x10(3) and 2.76x10(3) M(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号