共查询到20条相似文献,搜索用时 15 毫秒
1.
Zaima N Goto-Inoue N Hayasaka T Enomoto H Setou M 《Analytical and bioanalytical chemistry》2011,400(7):1865-1871
It has become necessary to assess the authenticity of beef origin because of concerns regarding human health hazards. In this
study, we used a metabolomic approach involving matrix-assisted laser desorption/ionization imaging mass spectrometry to assess
the authenticity of beef origin. Highly accurate data were obtained for samples of extracted lipids from beef of different
origin; the samples were grouped according to their origin. The analysis of extracted lipids in this study ended within 10 min,
suggesting this approach can be used as a simple authenticity assessment before a definitive identification by isotope analysis. 相似文献
2.
E. J. Zaluzec D. A. Gage J. Allison J. Throck Watson 《Journal of the American Society for Mass Spectrometry》1994,5(4):230-237
Direct analysis of proteins adsorbed onto the surface of nylon membranes has been performed at the picomole level by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Nylon-66 and positive charge-modified nylon (Zetabind) membranes fixed to MALDI probe tips were successfully employed to analyze picomole quantities of sample that were adsorbed onto these inert supports prior to adding a matrix-containing solution. Proteins and peptides are readily solubilized from these types of membrane with conventional matrix solvents and cocrystallize with the matrix on the membrane surface. Because solubilization of membrane-adsorbed protein is necessary for successful sample preparation, nylon membranes are more suitable for use with MALDI-MS than other protein transfer membranes such as polyvinylidene difluoride or nitrocellulose. When compared to samples prepared conventionally, no apparent loss of sensitivity or resolution is observed when analysis by MALDI-MS is performed from nylon-66 or positive charge-modified nylon membranes. Detection limits and resolution are not apparently affected by the membrane immobilization/washing procedure, and no change in the mass accuracy is observed when analysis is performed on the nylon surface. However, there is a time shift (increase) in ion flight time when analysis by MALDI-time-of-flight-MS is performed directly from the membrane fixed to the probe tip (about 200 ns for an ion of mass 379.3). To maintain mass accuracy, the use of internal standards or external calibration performed on a membrane support was necessary. The immobilization of proteins on nylon membranes can be used to facilitate removal of water-soluble contaminants because the sample is retained when the membrane is immersed in water prior to adding the matrix solution. The feasibility of performing both chemical and enzymatic modifications of proteins adsorbed onto inert nylon supports prior to analysis by MALDi-MS is also demonstrated. 相似文献
3.
Oxidized carbon nanotubes (CNTs), which can form a stable homogeneous suspension in water close to a solution phase, were synthesized and used for matrix-assisted desorption/ionization mass spectrometric (MALDI-MS) analysis of biomolecules. Infrared (IR) spectra, transmission electron microscopy (TEM) and particle size analysis were used for the characterization of the oxidized CNTs. The results indicate that the physical structure of the CNTs was not damaged, but carboxylate groups were introduced onto the surface of the CNTs. In addition, impurities including amorphous carbon, which is one of the main reasons for ion source contamination, were destroyed by the oxidization. The carboxyl groups on the oxidized surface of the CNTs can not only provide an additional proton source, but can also increase the surface polarity and solubility of the CNTs, making it easier to manipulate which is important for MALDI analysis of some biomolecules, especially larger peptides and proteins. The oxidized CNTs were successfully applied to the analysis of neutral oligosaccharides, peptides, and insulin, and thus promise to be an efficient matrix for MALDI-MS analysis of biomolecules. 相似文献
4.
Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints 总被引:11,自引:0,他引:11
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of protein samples from two-dimensional (2-D) gels in conjunction with protein sequence database searches is frequently used to identify proteins. Moreover, the automatic analysis of complete 2-D gels with hundreds and even thousands of protein spots ("proteome analysis") is possible, without human intervention, with the availability of highly accurate mass spectrometry instruments, and high-throughput facilities for preparation and handling of protein samples from 2-D gels. However, the lack of software for precise automatic analysis and annotation of mass spectra, as well as software for in-batch sequence database queries, is increasingly becoming a significant bottleneck for the proteomics work flow. In the present paper we outline an algorithm for reliable, accurate, and automatic evaluation of mass spectrometric data and database searches. We show here that simply selecting from the sequence database the protein that has the most matching fragment masses often leads to false-positive results. Reliable protein identification is dependent on several parameters: the accuracy of fragment mass determination, the number of masses submitted for query, the mass distribution of query masses, the number of masses matching between sample and database protein, the size of the sequence database, and the kind and number of modifications considered. Using these parameters, we derive a simple statistical estimation that can be used to calculate the probability of true-positive protein identification. 相似文献
5.
Cozzolino R Passalacqua S Salemi S Malvagna P Spina E Garozzo D 《Journal of mass spectrometry : JMS》2001,36(9):1031-1037
The development is described of a rapid, simply and accurate analytical method aimed at evaluating both the presence of cow milk in either raw ewe and water buffalo milk samples employed in industrial processes and the addition of powdered milk to samples of fresh raw milk, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The presence of adulteration is defined by evaluating the protein patterns coming from the most abundant whey proteins, alpha-lactalbumin and beta-lactoglobulin, used as molecular markers. As no pretreatment of the milk samples is required and owing to the speed and ease of use of MALDI-MS the proposed analytical protocol can be used as a routine strategy for the identification of possible adulteration of the raw fresh milk samples that the dairy industry receives from producers every day. 相似文献
6.
Kang JH Kuramoto M Tsuchiya A Toita R Asai D Sato YT Mori T Niidome T Katayama Y 《European journal of mass spectrometry (Chichester, England)》2008,14(4):261-265
To identify the correlation between the phosphorylation ratios by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) analysis and enzyme kinetics (K(m), V(max), and V(max)/K(m)) is important to understand whether MALDI-TOF MS can be applied for monitoring the properties of peptides that are substrates of protein kinases. The correlation between phosphorylation ratios and enzyme kinetics was examined using peptides for protein kinase C (PKC) and for 60 kDa phosphoprotein, encoded by the cellular sarcoma gene (c-Src). Phosphorylation ratios, analyzed by MALDI-ToF MS, showed higher correlation coefficient (r = > +0.7) for V(max)/K(m) compared with that (r = < -/+0.6) for K(m) or V(max). For ion modes, a higher correlation coefficient between phosphorylation ratios and V(max)/K(m) was identified in the positive mode (r = > +0.7) compared to that in the negative mode (r = < +0.5). These results suggest that MALDI-ToF MS is a useful tool to evaluate V(max)/K(m) of peptides for protein kinases. 相似文献
7.
Mass spectrometric analysis of blotted proteins after gel electrophoretic separation by matrix-assisted laser desorption/ionization. 总被引:1,自引:0,他引:1
The molecular masses of electroblotted proteins were determined with a time-of-flight mass spectrometer by matrix-assisted laser desorption/ionization directly from blot membranes. Therefore standard proteins, separated by polyacrylamide gel electrophoresis, were electroblotted onto polyvinylidene difluoride or polyamide membranes by standard procedures. Pieces of membrane containing the protein of interest were soaked in matrix solution and analyzed in the mass spectrometer. 相似文献
8.
Hardouin J Hubert-Roux M Delmas AF Lange C 《Rapid communications in mass spectrometry : RCM》2006,20(5):725-732
The identification of isoforms is one of the great challenges in proteomics due to the large number of identical amino acids preventing their separations by two-dimensional electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become a rapid and sensitive tool in proteomics, notably with the new instrumental improvements. In this study, we used several acquisition modes of MALDI-TOFMS to identify isoforms of porcine glutathiones S-transferase. The use of multiple proteases coupled to the different acquisition modes of MALDI-TOFMS (linear, reflectron, post-source decay (PSD) and in-source decay, positive and negative modes) allowed the identification of two sequences. Moreover, a third sequence is pointed out from a PSD study of a tryptic ion revealing the modification of the amino acid tyrosine 146 to phenylalanine. 相似文献
9.
C(alpha)-Formylglycine, the catalytic amino acid residue in the active site of sulfatases, is generated by post-translational modification of a cysteine or serine residue. We describe a highly sensitive procedure for the detection of C(alpha)-formylglycine-containing peptides in tryptic digests of sulfatase proteins. The protocol is based on the formation of hydrazone derivatives of C(alpha)-formylglycine-containing peptides when using dinitrophenylhydrazine as a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The hydrazone derivatives desorb and ionize with high efficiency and can be detected in the sub-femtomole range. The presence of C(alpha)-formylglycine is indicated by a mass increment of 180.13 u, corresponding to the hydrazone moiety, and also by a unique C-terminal fragment ion, characteristic of sulfatases, that becomes prominent in MALDI post-source decay mass spectra of the hydrazone derivatives. 相似文献
10.
Lay JO Liyanage R Durham B Brooks J 《Rapid communications in mass spectrometry : RCM》2006,20(6):952-958
Direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of solutions of edible fats/oils yielded spectra useful for their rapid differentiation and classification. Results also reflected the individual fatty acid components and their degree of unsaturation. After dissolution in hexane, MALDI-MS analysis revealed spectra showing characteristic triacylglycerols (TAGs), the main fat/oil components, as sodium adduct ions. The Euclidean distances calculated using the mass and intensity values for 20 TAGs were used to evaluate and compare spectra. With cluster analysis, animal fats grouped together differently than vegetable oils and the individual oils grouped together by type. The ion abundances for the individual TAGs and their presumed compositions were used to approximate the overall fatty acid composition of canola, soybean, corn, olive and peanut oil, as well as lard. Using this approach the calculated fatty acid compositions and degree of unsaturation generally fell within about 4% of literature values. When the degree of saturation was compared with values calculated from the package labeling the differences were about 7%. 相似文献
11.
Ishida Y Madonna AJ Rees JC Meetani MA Voorhees KJ 《Rapid communications in mass spectrometry : RCM》2002,16(19):1877-1882
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), utilizing an on-probe sample pretreatment, was applied to the rapid and direct detection of intact phospholipids from whole bacterial cells. The sample preparation procedure involved depositing growing bacterial colonies from culture dishes directly onto the MALDI probe followed by treatment of the sample spot with a 3 micro L aliquot of an aqueous 0.05 M solution of sodium iodide prior to the addition of a 2,5-dihydroxybenzoic acid (DHB) matrix solution (ca. 8 mg dissolved in 70% acetonitrile/30% H(2)O containing 0.1% of trifluoroacetic acid). The MALDI spectra obtained from whole bacteria cells showed a series of ions generated from bacterial phospholipids, such as phosphatidylethanol-amines (PEs) and phosphatidylglycerols (PGs), which were clearly observed as well-resolved peaks. The ranges of the observed total carbon numbers in two acyl groups for PEs and PGs (30-36 and 33-36, respectively) were in good agreement with those reported previously. Furthermore, the distinct discrimination of four species of the Enterobacteriaceae family cultured identically was achieved by using principal components analysis (PCA) conducted on the relative peak intensities of phospholipids observed from the MALDI spectra. 相似文献
12.
Ultraviolet matrix-assisted laser desorption/ionization mass spectrometric (UV-MALDI-MS) analysis of highly acidic, thermally labile species such as glycosaminoglycan-derived oligosaccharides is complicated by their poor ionization efficiency and tendency to fragment through the loss of sulfo groups. We have utilized a systematic approach to evaluate the effect of alkali metal counterions on the degree of fragmentation through SO3 loss from a highly sulfated model compound, sucrose octasulfate (SOS). The lithium, sodium, potassium, rubidium, and cesium salts of SOS were analyzed by UV-MALDI-time-of-flight (TOF)MS using an ionic liquid matrix, bis-1,1,3,3-tetramethylguanidinium alpha-cyano-4-hydroxycinnamate. The positive-ion and negative-ion MALDI mass spectra of five alkali metal salts of SOS were compared in terms of the degree of analyte fragmentation through the SO3 loss and the absolute intensity of a molecular ion signal. Experimental results demonstrate that the lithium, sodium, and potassium salts of SOS undergo some degree of fragmentation through the loss of SO3, whereas the fragmentation through the loss of SO3 in the rubidium and cesium salts of SOS is suppressed. A high detection sensitivity associated with the stability of sulfate half-esters was achieved for the cesium salt of SOS using positive-ion detection. Finally, the cesium salt of chondroitin sulfate A disaccharide was successfully analyzed using UV-MALDI-TOFMS. 相似文献
13.
Sun S Ma H Han G Wu R Zou H Liu Y 《Rapid communications in mass spectrometry : RCM》2011,25(13):1862-1868
An efficient and simple method for enrichment and identification of phosphopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using cerium oxide is presented. After pretreatment of tryptic digests of phosphoproteins with CeO(2), nonphosphopeptides are discarded and phosphopeptides are enriched. By applying the separated CeO(2) on a target plate and analysis using MALDI-TOF MS, peaks of phosphopeptides and their correspondingly series of dephosphorylated peptides are observed in the mass spectra. Thus, the phosphopeptides are very easy to identify with the mass difference, which are all 80 Da between adjacent peaks in the same series, and clear background in the spectra owing to elimination of signal suppression from large amounts of nonphosphopeptides. Furthermore, the phosphopeptides can be dephosphorylated completely after a further NH(4)OH elution. Tryptic digest products from several standard proteins are pretreated using CeO(2) to demonstrate the efficiency of this method. Phosphopeptides from a very small quantity of human serum are enriched and analyzed, and proteins also identified by searching against a database using Mascot on MALDI-TOF/TOF fragments, which indicates that this method may be employed in complex samples for further application. 相似文献
14.
K Janek H Wenschuh M Bienert E Krause 《Rapid communications in mass spectrometry : RCM》2001,15(17):1593-1599
This article describes a simple procedure for the detection of phosphorylated peptides by comparable positive and negative ion mode matrix-assisted laser desorption/ionization mass spectrometry measurements. Based on studies with phosphorylated peptides (EAIXAAPFAK, X = pS, pT, pY) and their corresponding non-phosphorylated analogs, it was found that phosphopeptides, which are characterized by a low ionization efficiency in the positive ion mode, exhibit drastically increased signal intensities in the negative ion mode compared to their non-phosphorylated analogs. The effect was successfully used to identify phosphorylated sequences of the commonly used phosphoprotein standards, protein kinase A and beta-casein, by peptide mass fingerprint analyses of the corresponding Lys C and trypsin digests using both (positive and negative) ion modes. The comparison of positive and negative ion spectra of a given protein digest (relative intensity([M - H]-)/relative intensity([M + H]+)) can be used to identify any phosphopeptides present which may then be separated and analyzed further. 相似文献
15.
Scherl A Zimmermann-Ivol CG Di Dio J Vaezzadeh AR Binz PA Amez-Droz M Cochard R Sanchez JC Glückmann M Hochstrasser DF 《Rapid communications in mass spectrometry : RCM》2005,19(5):605-610
Acquisition of tandem mass spectra from peptides or other analytes deposited on non-conductive membranes is inhibited on instruments combining matrix-assisted laser desorption/ionization with tandem time-of-flight analyzers (MALDI-TOF/TOF) due to a charging effect. A thin layer of gold renders the membrane conductive. This allows adequate data acquisition on MALDI-TOF/TOF systems. Therefore, this methodology extends the capacity of the molecular scanner concept to tandem mass spectrometry. 相似文献
16.
Permethylated, peracetylated and perbenzoylated derivatives of glycosphingolipids (GSLs) were prepared to compare their liquid secondary ionization mass spectrometric (LSIMS) and collision-induced dissociation tandem mass spectrometric (CID/MS/MS) fragmentation patterns and also to determine sensitivity improvement in LSIMS and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) relative to the native species. Permethylation was carried out in the liquid phase, whereas peracetylation and perbenzoylation could be effected using either liquid (bulk)-phase or gas-phase procedures. Lower amounts of starting material were required for the gas-phase derivatization (? 100 pmol) compared with the bulk phase (?1 nmol), because the former method permits more efficient sample handling. All three types of derivatives yielded sensitivity improvements of at least two orders of magnitude over the native species in both LSIMS and MALDI-TOFMS. The behavior of the permethylated compounds was used as the benchmark for GSL structural information content in normal and tandem mass spectra. Fragments present in spectra of the three types of derivatives generated complementary information. Permethylated GSLs favored the formation of ions related to the ceramide moieties, whereas peracetylation enhanced the production of carbohydrate-related ions. The LSI mass spectra of perbenzoylated GSLs contained information on both ceramide and sugar portions of the molecules. Each of the LSIMS, MS/MS and MALDI-TOFMS techniques proved to be complementary to the others in this study; the use of all three is recommended for the generation of complete structural information. 相似文献
17.
Lin M Campbell JM Mueller DR Wirth U 《Rapid communications in mass spectrometry : RCM》2003,17(16):1809-1814
Direct tandem mass spectrometric (MS/MS) analysis of small, singly charged protein ions by tandem time-of-flight mass spectrometry (TOFMS) is demonstrated for proteins up to a molecular mass of 12 kDa. The MALDI-generated singly charged precursor ions predominantly yield product ions resulting from metastable fragmentation at aspartyl and prolyl residues. Additional series of C-terminal sequence ions provide in some cases sufficient information for protein identification. The amount of sample required to obtain good quality spectra is in the high femtomolar to low picomolar range. Within this range, MALDI-MS/MS using TOF/TOF trade mark ion optics now provides the opportunity for direct protein identification and partial characterization without prior enzymatic hydrolysis. 相似文献
18.
Stephanie L. Gantt Nancy B. Valentine Adam J. Saenz Mark T. Kingsley Karen L. Wahl 《Journal of the American Society for Mass Spectrometry》1999,10(11):1131-1137
A method to aid in the analysis of bacterial samples of unknown concentration by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is demonstrated. It is shown that in MALDI analysis of bacteria, the intensities of resulting peaks in spectra are sensitive to the microbial concentration. At the high and low ends of the concentration range, no signal can be obtained, leaving very concentrated or very dilute samples indistinguishable. The addition of cytochrome c as an internal control allows the differentiation of these concentrated and dilute samples. The presence of the internal control causes only a 20% to 30% decrease in signal intensity when the bacterial concentration is optimum. However, the signal quality is improved when the internal control is added to some low concentrations of bacteria. 相似文献
19.
Cox FJ Johnston MV Qian K Peiffer DG 《Journal of the American Society for Mass Spectrometry》2004,15(5):681-688
A low molecular weight predominantly polyolefin copolymer of isobutylene and para methylstyrene (IMS) was studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Average composition information derived from the spectra was skewed to higher para methylstyrene (pMS) content as compared to that obtained using multiple NMR techniques, and drifted towards lower pMS incorporation at higher oligomer lengths. Although both observations were initially attributed in total to an inability to ionize the isobutylene component, comparison with subsequent field desorption (FD) mass spectrometry results gave similar values to that obtained via MALDI, even though FD ionizes oligomers not detected by MALDI. Instead, the compositional drift observed with MALDI roughly mirrored the mass distribution, and was determined to arise from a mass bias effect in oligomer ionization and detection. Composition with respect to oligomer mass was found to be relatively constant, although similarly higher in pMS content. Comparison of experimental peaks with a Bernoullian statistical model revealed severe overrepresentation of higher pMS composition oligomers with regard to the calculated distribution. This discrepancy is attributed to preferential ionization of oligomers with greater pMS content, and likely results in the observed difference between MALDI and NMR compositions. 相似文献
20.
Brancia FL Oliver SG Gaskell SJ 《Rapid communications in mass spectrometry : RCM》2000,14(21):2070-2073
Analysis of tryptic digests of proteins using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry commonly results in superior detection of arginine-containing peptides compared with lysine-containing counterparts. The effect is attributable in part to the greater stability of the arginine-containing peptide ions associated with the sequestration of the single ionizing proton on the arginine side-chain. Reaction of peptides with O-methylisourea resulted in conversion of lysine to homoarginine residues with consequent improved detection during MALDI-MS. Analysis of the underivatized tryptic digest of the yeast protein, enolase, revealed peptides representing 20% of the protein; the corresponding figure after derivatization was 46%. 相似文献