首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study both classical and quantum relation between two Hamiltoniansystems which are mutually connected by time-dependent canonical transformation. One is ordinary conservative system and the other istime-dependent Hamiltonian system. The quantum unitary operatorrelevant to classical canonical transformation between the two systems are obtained through rigorous evaluation. With the aid of the unitary operator, we have derived quantum states of the time-dependent Hamiltonian system through transforming the quantum states of the conservative system. The invariant operators of the two systems are presented and the relation between them are addressed. We showed that there exist numerous Hamiltonians, which gives the same classical equation of motion. Though it is impossible to distinguish the systems described by these Hamiltonians within the realm of classical mechanics, they can be distinguishable quantum mechanically.  相似文献   

2.
We inquire into the time evolution of quantum systems associated with pseudo-or quasi-Hermitian Hamiltonians. We obtain, in the pseudo-Hermitian case, a generalized Liouville-von Neumann equation for closed systems. We show that quantum systems with quasi-Hermitian Hamiltonians admit the proper interpretation in terms of open quantum system and derive a generalized Lindblad-Kossakowski equation. Finally, we extend such formalism to the study of decaying systems. Partially supported by PRIN “Sintesi”.  相似文献   

3.
By means of the complex Clifford algebra, a new realization of multi-dimensional semiunitary transformation is put forward and then applied to studying the isospectrality of nonrelativistic Hamiltonians of multi-dimensional quantum mechanical systems, in which the generalized Pauli coupling interaction and spin-orbit coupling interaction appear naturally. Moreover, it is shown that the semiunitary operators, together with the Hamiltonian of quantum mechanical system, satisfy the polynomially-deformed angular momentum algebra.  相似文献   

4.
By means of the complex Clifford algebra, a new realization of multi-dimensional semiunitary transformation is put forward and then applied to studying the isospectrality of nonrelativistic Hamiltonians of multi-dimensional quantum mechanical systems, in which the generalized Pauli coupling interaction and spin-orbit coupling interaction appear naturally. Moreover, it is shown that the semiunitary operators, together with the Hamiltonian of quantum mechanical system, satisfy the polynomially-deformed angular momentum algebra.``  相似文献   

5.
For a quantum system weakly coupled to heat reservoirs, a statistical mechanical theory is developed in a formalism that dovetails perfectly with phenomenological thermodynamics. The present model is a modification of the many-reservoir model by Bergmann and Lebowitz. The method to be used here is based on the explicit introduction of external forces which bring about a deviation from equilibrium. These forces are assumed to arise from mechanical interaction with its surrounding which can be characterized thermodynamically. By an appropriate choice of reservoirs the Liouville-von Neumann equation is found to describe a heat conducting system. The nonequilibrium density matrices which describe such a system are found explicitly for some interesting cases. With these density matrices we obtain an expression for entropy production.  相似文献   

6.
A method is developed to determine the eigenvalues and eigenfunction of two-boson 2 × 2 matrix Hamiltonians that include a wide class of quantum optical models. The quantum Hamiltonians are transformed in the form of the one variable differential equation and the conditions for their solvability are discussed. We present two different transformation procedures and we show our approach unify various approaches based on Lie algebraic technique. As an application, solutions of the modified Jaynes-Cummings and two-level Jahn-Teller Hamiltonians are studied.  相似文献   

7.
《Physica A》1995,221(4):511-538
Using the density matrix method in the form developed by Zubarev, equations of motion for nonequilibrium quantum systems with continuous short range interactions are derived which describe kinetic and hydrodynamic processes in a consistent way. The T-matrix as well as the two-particle density matrix determining the nonequilibrium collision integral are obtained in the ladder approximation including the Hartree-Fock corrections and the Pauli blocking for intermediate states. It is shown that in this approximation the total energy is conserved. The developed approach to the kinetic theory of dense quantum systems is able to reproduce the virial corrections consistent with the generalized Beth-Uhlenbeck approximation in equilibrium. The contribution of many-particle correlations to the drift term in the quantum kinetic equation for dense systems is discussed.  相似文献   

8.
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schrödinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.  相似文献   

9.
It is well known that the ground state energy of many-particle Hamiltonians involving only 2-body interactions can be obtained using constrained optimizations over density matrices which arise from reducing an N-particle state. While determining which 2-particle density matrices are "N-representable" is a computationally hard problem, all known extreme N-representable 2-particle reduced density matrices arise from a unique N-particle preimage, satisfying a conjecture established in 1972. We present explicit counterexamples to this conjecture through giving Hamiltonians with 2-body interactions which have degenerate ground states that cannot be distinguished by any 2-body operator. We relate the existence of such counterexamples to quantum error correction codes and topologically ordered spin systems.  相似文献   

10.
We study Pauli-Fierz Hamiltonians-self-adjoint operators describing a small quantum system interacting with a bosonic field. Using quadratic form techniques, we extend the results of Dereziński-Gérard and Gérard about the self-adjointness, the location of the essential spectrum and the existence of a ground state to a large class of Pauli-Fierz Hamiltonians.  相似文献   

11.
N N Rao  B Buti  S B Khadkikar 《Pramana》1986,27(4):497-505
Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples.  相似文献   

12.
B. Belchev 《Annals of Physics》2009,324(3):670-681
Dito and Turrubiates recently introduced an interesting model of the dissipative quantum mechanics of a damped harmonic oscillator in phase space. Its key ingredient is a non-Hermitian deformation of the Moyal star product with the damping constant as deformation parameter. We compare the Dito-Turrubiates scheme with phase-space quantum mechanics (or deformation quantization) based on other star products, and extend it to incorporate Wigner functions. The deformed (or damped) star product is related to a complex Hamiltonian, and so necessitates a modified equation of motion involving complex conjugation. We find that with this change the Wigner function satisfies the classical equation of motion. This seems appropriate since non-dissipative systems with quadratic Hamiltonians share this property.  相似文献   

13.
We develop a general theory of the relation between quantum phase transitions (QPTs) characterized by nonanalyticities in the energy and bipartite entanglement. We derive a functional relation between the matrix elements of two-particle reduced density matrices and the eigenvalues of general two-body Hamiltonians of d-level systems. The ground state energy eigenvalue and its derivatives, whose nonanalyticity characterizes a QPT, are directly tied to bipartite entanglement measures. We show that first-order QPTs are signaled by density matrix elements themselves and second-order QPTs by the first derivative of density matrix elements. Our general conclusions are illustrated via several quantum spin models.  相似文献   

14.
We introduce a method of quantum tomography for a continuous variable system in position and momentum space. We consider a single two-level probe interacting with a quantum harmonic oscillator by means of a class of Hamiltonians, linear in position and momentum variables, during a tunable time span. We study two cases: the reconstruction of the wavefunctions of pure states and the direct measurement of the density matrix of mixed states. We show that our method can be applied to several physical systems where high quantum control can be experimentally achieved.  相似文献   

15.
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.  相似文献   

16.
We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.  相似文献   

17.
Quantum Fisher information(QFI) gap characterizes the stability of QFI to space directions. We study the QFI distributions and QFI gap for quantum states generated from nonlinear Hamiltonians for both spin and bosonic systems. We find that the same spin-squeezing parameter(or principle squeezing parameter) corresponds to two different values QFI gap, and the locations of all extreme points of the QFI are explicitly given.  相似文献   

18.
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.  相似文献   

19.
A quantum deformation of the two-photon (or Schrödinger) Lie algebra is introduced in order to construct newn-dimensional classical Hamiltonian systems which have (n?2) functionally independent integrals of motion in involution; we say that such Hamiltonians define quasi-integrable systems. Furthermore, Hopf subalgebras of this quantum two-photon algebra (quantum extended Galilei and harmonic oscillator algebras) provide another set of (n?1) integrals of motion for Hamiltonians defined on these Hopf subalgebras, so that they lead to superintegrable systems.  相似文献   

20.
ABSTRACT

Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号