首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi Z  Li G  Zhang D  Hua J  Feng S 《Inorganic chemistry》2003,42(7):2357-2361
A novel vanadium(IV) phosphite, (VO)(4)(4,4'-bpy)(2)(HPO(3))(4), was hydrothermally synthesized and characterized by single-crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a = 35.970(3) A, b = 15.9400(13) A, c = 10.7681(7) A, beta = 101.073(4) degrees, and Z = 8 with R(1) = 0.0482. The structure of the compound consists of trigonal bipyramidal [VO(4)N] and pseudopyramidal [HPO(3)] blocks, which are connected by corner-sharing, to form vanadium phosphite layers in the bc plane. These layers are further linked through 4,4'-bpy pillars, generating a 3D framework. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

2.
Reaction of R-styreneoxide with glycine-tert-butylester yielded amino alcohols of the general formula NR1R2R3, where R1 = CH2COOtBu and R2 = R3 = 2-phenyl-2-hydroxyethyl (H2LA); R2 = 2-phenyl-2-hydroxyethyl and R3 = 1-phenyl-2-hydroxyethyl (H2LB); R2 = H and R3 = 2-phenyl-2-hydroxyethyl (HLC); and R2 = H and R3 = 1-phenyl-2-hydroxyethyl (HLD). The corresponding reaction with sarcosine-tert-butylester and subsequent hydrolysis provided the zwitterion +NH(CH3){CH2CHPh(OH)}(CH2CO2-), HLE* (asterisk refers to unprotected carboxylate). Reaction of these ligands with VO(OiPr)3 in CH2Cl2 gave the oxovanadium(V) complexes [VOL(OiPr)2] and [VOL2(OiPr)] (for LC and LD) or, when reacted in the presence of MeOH, [VOL'(OMe)], where L' represents the methyl ester of LA, LB, and LE. The crystal and molecular structures of R-HLC, S-HLD, R,S-HLE* x H2O, and lambda-[VO(R,S-LB')OMe] have been determined. The complex [VOLB'(OMe)] contains vanadium in a distorted trigonal-bipyramidal array (tau = 0.72), the oxo group in the equatorial plane, and methoxide and N in the apical positions, and thus, it structurally models the active center of vanadate-dependent haloperoxidases. The structure and the bonding parameters, including a particularly long d(V-N) of 2.562 A, are backed up by DFT calculations. The isolated oxovanadium(V) complexes and the in situ systems L + VO(OiPr)3 catalyze the oxidation, by cumylhydroperoxide HO2R', of prochiral sulfides (MeSPh, MeSp-Tol, PhSBn) to chiral sulfoxides plus some sulfone. The best results with respect to enantioselectivity (enantiomeric excess (ee) = 38%) were obtained with the system VO(OiPr)3/LA, and the best selectivity with respect to sulfoxide (100%) was obtained with [VOLA(OiPr)]. The reaction with the hexacoordinated [VO(OMe)(HOMe)LD*] was very slow. Oxidation of PhSBn is faster than that of MeSPh and MeSpTol. Turn-over numbers are up to 60 mol of sulfoxide mol-1 of catalyst h-1 (-20 degrees C). The unspectacular ee apparently is a consequence of flexibility of the active catalyst in solution, as shown by the 51V NMR of the catalysts [VOL(OR)] and the oxo-peroxo intermediates [VOL(O2R')]. As shown by DFT calculations, the peroxo ligand coordinates in the tilted end-on fashion in the axial or equatorial position (energy difference = 17.6 kJ/mol).  相似文献   

3.
The new mercury vanadium phosphate hydrate Hg(4)(-)(x)()O(1)(-)(y)()(VO)(PO(4))(2).H(2)O has been synthesized under hydrothermal conditions. X-ray investigations led to orthorhombic symmetry, space group P2(1)2(1)2(1) (No. 19), a = 6.3632(2) A, b = 12.4155(5) A, c = 14.2292(6) A, Z = 4. The crystal structure was solved and refined from single-crystal diffractometer data to residuals R[F(2) > 2sigmaF(2)] = 0.039, R(w)(F(2)) = 0.055. The VPO framework consists of infinite one-dimensional [VO(PO(4))(2)]( infinity ) chains with corner-connected VO(6) octahedra and PO(4) tetrahedra. The chains run along the [100] direction and are held together by the unprecedented tetrahedral cationic units [Hg(4)(-)(x)()O(1)(-)(y)()](4+). Presence of Hg-Hg bonding contacts is proved from theoretical calculations.  相似文献   

4.
Three novel vanadium selenites with the formulae [(VO2)(1,10-phenanthtoline)(SeO3H)]2 1, [(VO2)(2,2′-bipyridine)]2(SeO3) 2 and [(VO)(H2O)(SeO3)2]2(HaEDD) 3 (EDD = N1,N1′-(ethane-1,2-diyl)diethane-1,2-diamine) were hydrothermally synthesized, and characterized with elemental analysis, FT-IR spectrum, Raman spectrum, TG-DTA analysis, EPR spectra, and single-crystal X-ray diffraction analysis. Compound I belongs to the triclinic system, space group P1^- with a = 7.7527(5), b = 9.5345(10), c = 9.8192(8) A^°, α = 92.712(3), β = 105.540(3), γ = 108.154(4)°, V = 657.66(1) A^°^3, Mr = 782.22, Z = 1, F(000) = 384,μ(MoKa) = 3.544 mm^-1, R = 0.0432 and wR = 0.1142; Compound 2 is of orthorhombic system, space group F212121 with a = 7.6574(15), b = 14.916(3), c = 19.085(4) A, V = 2179.8(8) Aa, Mr = 605.21, Z = 4, F(000) = 1200, μ(MoKa) = 2.579 mm^-1, R = 0.0338 and wR = 0.0658; Compound 3 belongs to the triclinic system, space group P1^- with a = 9.247(2), b = 9.659(2), c = 7.2651(19) A^°, α = 98.171(7), β = 103.709(5), γ = 114.712(13)°, V = 550.9(2) A^°^3, Mr = 828.03, Z = 1, F(000) = 400, μ(MoKa) = 7.537 mm^-1, R = 0.0641 and wR = 0.2118. Compound 1 is constructed from alternating corner-shared [VO4N2] octahedra and SeO3H units, forming a dimeric vanadium unit. These assemblies are further linked into an infinite chain via hydrogen bonds along the a axis. In the structure of 2, two distinct V centers form centrosymmetric [V2O6N4] clusters through edge-sharing, and the SeO3 unit serves as a capping unit to fix the oxovanadate cluster. In the structure of 3, each [VO6] octahedron shares four oxygen atoms with adjacent Se atoms, while every SeO3 unit shares two oxygen atoms with neighboring V atoms. This connectivity of alternating VO6 and SeO3 units results in a joint-like chain. Based on the TGA analysis, these three compounds are thermally stable under 200℃ .  相似文献   

5.
Two different monoanionic O,N-chelating ligand systems, i.e., [OC6H2(CH2NMe2)-2-Me2-4,6]- (1) and [OCMe2([2]-Py)]- (2), have been applied in the synthesis of vanadium(V) complexes. The tertiary amine functionality in 1 caused reduction of the vanadium nucleus to the 4+ oxidation state with either [VOCl3], [V(=NR)Cl3], or [V(=NR)(NEt2)3] (R = Ph, (3a, 5a), R = p-Tol (3b, 5b)), and applying 1 as a reducing agent resulted in the synthesis of the vanadium(IV) complexes [VO(OC6H2(CH2NMe2)-2-Me2-4,6)2] (4) and [V(=NPh)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (6). In the case of [V(=N-p-Tol)(NEt2)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (7b), the reduction was sufficiently slow to allow its characterization by 1H NMR and variable-temperature studies showed it to be a five-coordinate species in solution. Although the reaction of 1 with [V(=N-p-Tol)(O-i-Pr)3] (9b) did not result in reduction of the vanadium nucleus, vanadium(V) compounds could not be isolated. Mixtures of the vanadium(V) (mono)phenolate, [V(=N-p-Tol)(O-i-Pr)2(OC6H2(CH2NMe2)-2-Me2-4,6)] (10), and the vanadium(V) (bis)phenolate, [V(=N-p-Tol)(O-i-Pr)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (11), were obtained. With the pyridylalkoxide 2, no reduction was observed and the vanadium(V) compounds [VOCl2(OCMe2([2]-Py))] (12) and [V(=N-p-Tol)Cl2(OCMe2([2]-Py)] (13) were obtained. 51V NMR showed 7b and 12 to be five-coordinate in solution, whereas for 10, 11, and 13 a coordination number of 6 was found. Compounds 12 and 13 showed decreased activity compared to their nonchelated vanadium(V) analogues when applied as catalysts in ethene polymerization. Two polymorphic forms with a difference in the V-N-C angle of 12.5 degrees have been found for 6. Crystal data: 6.Et2O, triclinic, P1, a = 11.1557(6) A, b = 12.5744(12) A, c = 13.1051(14) A, alpha = 64.244(8) degrees, beta = 70.472(7) degrees, gamma = 87.950(6) degrees, V = 1547(3) A3, Z = 2; 6.C6H6, triclinic, P1, a = 8.6034(3) A, b = 13.3614(4) A, c = 15.1044(5) A, alpha = 98.182(3) degrees, beta = 105.618(2) degrees, gamma = 107.130(2) degrees, V = 1551.00(10) A3, Z = 2; 12, orthorhombic, Pbca, a = 11.8576(12) A, b = 12.6710(13) A, c = 14.722(2) A, V = 2211.9(4) A3, Z = 8.  相似文献   

6.
The EXAFS region of vanadium K-edge XAS spectra of native vanadate-dependent bromoperoxidase (isoenzyme I) from Ascophyllum nodosum in the presence of the substrate bromide can be fitted to three shells (at 1.62, 1.73-1.78 and 1.99-2.07 A) in the first coordination sphere of vanadium plus two more distant shells at 4.1A, possibly corresponding to bromide, and 4.7 A due to light scatterers stemming from the protein pocket. Bromide does not directly bind to the vanadium centre. The XANES and the EXAFS features for the enzyme are essentially reproduced by model complexes of the general composition [VO(H(2)O)(n)(ONO)] (n= 1 or 2) where ONO is the dianion of a Schiff base from bromosalicylaldehydes (Brsal; with the Br substituent in the position 3, 4, 5 or 6) and amino acids. The 3-Brsal derivatives exhibit an outer sphere shell at 3.8 A, which is traced back to intermolecular contacts. The data obtained from EXAFS are compared to those obtained from single crystal X-ray diffraction of [VO(H(2)O)(2)(4-Brsal-gly)] and [VO(H(2)O)(2)(6-Brsal-gly)] (gly = glycinate). In the complex [VOBr(2)(ONO)']] ((ONO)' is the Schiff base from o-anisole and o-hydroxyaniline), the V-Br distance is 2.44 A.  相似文献   

7.
The oxidation of oxovanadium(IV) complexes [LV(IV)O] (L = tetradentate Schiff-base ligands such as N,N'-ethylenebis(salicylideneaminate)(2-) (salen) and N,N'-2,2-dimethylpropylenebis(salicylideneaminate)(2-) (salpn)) to [LV(V)O](+), believed to be responsible for the voltammetric response near 0.6 V vs Ag/AgCl in CH(2)Cl(2) in the presence of tetrabutylammonium tetrafluoroborate as a supporting electrolyte, is in fact coupled to a homogeneous process where [LVO](+) coordinates BF(4)(-) to form a neutral complex formulated as [LVOBF(4)]. The formation constants for [VO(salen)BF(4)] and [VO(salpn)BF(4)] are evaluated to be K(salen)(-)(1) = 1.1 x 10(2) M(-)(1) and K(salpn)(-)(1) = 1.4 x 10 M(-)(1), respectively. Crystal structure of [VO(salen)BF(4)] reveals that one of the fluorine atoms in BF(4)(-) is so close to the vanadium(V) atom as to be practically bound in the solid state.  相似文献   

8.
In addition to halide oxidation, the vanadium haloperoxidases are capable of oxidizing sulfides to sulfoxides. Four vanadium complexes with tripodal amine ligands, K[VO(O(2))(heida)] (1), VO(2)(bpg) (2), K[VO(2)(ada)] (3), and K(2)[VO(O(2))(nta)] (4), previously shown to perform bromide oxidation (Colpas, G. J.; Hamstra, B. J.; Kampf, J. W.; Pecoraro, V. L. J. Am. Chem. Soc. 1996, 118, 3469-3477), have now been shown to oxidize aryl alkyl sulfides to the corresponding sulfoxides. The oxidation was observed by the disappearance of thioanisole's ultraviolet absorption at 290 nm, by the change in the aromatic region of the (1)H NMR spectrum of the sulfides, and by changes in the complexes' (51)V NMR spectra. The amount of methyl phenyl sulfide oxidized in 3 h was 1000 equiv (per metal complex). The oxidation product is almost exclusively sulfoxide, with very little sulfone (less than 3% over a 3 h experiment) formed. This is consistent with an electrophilic oxidation mechanism, as had been proposed for oxidation of bromide by 1-4. The rate was found to be first order in substrate concentration, similar to the rate law observed for bromide oxidation. Unlike the bromide oxidation, the equivalent of acid required for peroxovanadium complex activation is not consumed. The complexes 1-4 are not reactive with styrene or cyclooctene. The relevance of these reactions to the mechanism of the vanadium haloperoxidases and, more generally, peroxovanadium oxygenation of sulfides will be discussed.  相似文献   

9.
Binuclear, mu-bis(oxo)bis{oxovanadium(V)} complexes [(VOL)2(mu-O)2](2 and 7)(where HL are the hydrazones Hacpy-nah I or Hacpy-fah II; acpy = 2-acetylpyridine, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) were prepared by the reaction of [VO(acac)2] and the ligands in methanol followed by aerial oxidation. The paramagnetic intermediate complexes [VO(acac)(acpy-nah)](1) and [VO(acac)(acpy-fah)](6) have also been isolated. Treatment of [VO(acac)(acpy-nah)] and [VO(acac)(acpy-fah)] with aqueous H2O2 yields the oxoperoxovanadium(V) complexes [VO(O2)(acpy-nah)](3) and [VO(O2)(acpy-fah)](8). In the presence of catechol (H2cat) or benzohydroxamic acid (H2bha), 1 and 6 give the mixed chelate complexes [VO(cat)L](HL =I: 4, HL =II: 9) or [VO(bha)L](HL =I: 5, HL =II: 10). Complexes 4, 5, 9 and 10 slowly convert to the corresponding oxo-mu-oxo species 2 and 7 in DMF solution. Ascorbic acid enhances this conversion under aerobic conditions, possibly through reduction of these complexes with concomitant removal of coordinated catecholate or benzohydroxamate. Acidification of 7 with HCl dissolved in methanol afforded a hydroxo(oxo) complex. The crystal and molecular structure of 2.1.5H2O has been determined, and the structure of 7 re-determined, by single crystal X-ray diffraction. Both of these binuclear complexes contain the uncommon asymmetrical {VO(mu-O)}2 diamond core. The in vitro tests of the antiamoebic activity of ligands I and II and their binuclear complexes 2 and 7 against the protozoan parasite Entamoeba histolytica show that the ligands have no amoebicidal activity while their vanadium complexes 2 and 7 display more effective amoebicidal activity than the most commonly used drug metronidazole (IC50 values are 1.68 and 0.45 microM, respectively vs 1.81 microM for metronidazole). Complexes 2 and 7 catalyse the oxidation of styrene and ethyl benzene effectively. Oxidation of styrene, using H2O2 as an oxidant, gives styrene epoxide, 2-phenylacetaldehyde, benzaldehyde, benzoic acid and 1-phenyl-ethane-1,2-diol, while ethyl benzene yields benzyl alcohol, benzaldehyde and 1-phenyl-ethane-1,2-diol.  相似文献   

10.
Several new hydrated rare earth vanadates and rare earth oxy-vanadates have been synthesized using hydrothermal techniques and characterized using single crystal and powder X-ray diffraction and infrared and UV-vis absorption spectroscopies. The hydrated rare earth vanadates adopt the space group P2(1)/m with general formula A(3)VO(5)(OH)(3) (A = Y (1), Dy (2), or La (3)) and contain anionic distorted square pyramidal [VO(5)](-6) units and AO(7) and AO(8) polyhedra. The oxy-vanadates with the general formula A(2)O(VO(4)) (A = Y (4), Dy (5; 6), or Yb (7)) form two polymorphs in either P2(1)/c or C2/c space groups and contain anionic tetrahedral [VO(4)](-4) units and nonvanadium bonded O(2-) anions in distorted [OA(4)] tetrahedra. In all cases, the vanadium ion is in the tetravalent oxidation state, and its original source was the trace V(4+) impurities in YVO(4). The observed vanadyl and equatorial vanadium-oxygen bond lengths about the square pyramid in compounds 1-3 and the tetrahedral vanadium coordination found in compounds 4-7 are unusual for V(4+). The electronic and vibrational spectra are also reported and correlated with the appropriate coordination environment.  相似文献   

11.
The epoxidation of allylic alcohols is shown to be efficiently and selectively catalyzed by the oxidatively resistant sandwich-type polyoxometalates, POMs, namely [WZnM(2)(ZnW(9)O(34))(2)](q)(-) [M = OV(IV), Mn(II), Ru(III), Fe(III), Pd(II), Pt(II), Zn(II); q = 10-12], with organic hydroperoxides as oxygen source. Conspicuous is the fact that the nature of the transition metal M in the central ring of polyoxometalate affects significantly the reactivity, chemoselectivity, regioselectivity, and stereoselectivity of the allylic alcohol epoxidation. For the first time, it is demonstrated that the oxovanadium(IV)-substituted POM, namely [ZnW(VO)(2)(ZnW(9)O(34))(2)](12-), is a highly chemoselective, regioselective, and also stereoselective catalyst for the clean epoxidation of allylic alcohols. A high enantioselectivity (er values up to 95:5) has been achieved with [ZnW(VO)(2)(ZnW(9)O(34))(2)](12)(-) and the sterically demanding TADOOL-derived hydroperoxide TADOOH as regenerative chiral oxygen source. Thus, a POM-catalyzed asymmetric epoxidation of excellent catalytic efficiency (up to 42 000 TON) has been made available for the development of sustainable oxidation processes. The high reactivity and selectivity of this unprecedented oxygen-transfer process are mechanistically rationalized in terms of a peroxy-type vanadium(V) template.  相似文献   

12.
A new imidazolidine-bridged bis(aryloxido) ligand precursor (H(2)L) [H(2)L = 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-(1,1,3,3-tetramethylbutyl-2-yl)phenol)] was prepared in a relatively high yield (~60%) via a single-step Mannich condensation of 4-(1,1,3,3-tetramethylbutyl)phenol, ethylenediamine and paraformaldehyde at 2:1:3 molar ratio and characterized by chemical and physical techniques including X-ray crystallography. Reactions of H(2)L with [VO(OEt)(3)] at 1:1 and 1:2 molar ratios in toluene afforded [V(L-κ(3)O,N,N,O)(O)(OEt)] (1) and [V(2)(μ-L-κ(4)O,N,N,O)(μ-OEt)(2)(O)(2)(OEt)(2)] (2), respectively. Alcoholysis of 1 with EtOH enables elimination of one molecule of H(2)L and the formation of 2. Compounds 1 and 2 were characterized by IR and NMR spectroscopy as well as ES-MS experiments. The definitive molecular structure of 2 was provided by a single-crystal analysis and revealed its dinuclear nature, featuring two octahedral vanadium centres bridged by both OEt groups and the L ligand. The (51)V, (1)H and (13)C NMR spectra as well as ES-MS showed that 2 does not stay intact in solution and undergoes dissociation to give 1 and [VO(OEt)(3)].  相似文献   

13.
New hydrazone o-HO-phenylhydrazo-β-diketones (OHADB), R(1)NHN═CR(2)R(3) [R(1) = HO-2-C(6)H(4), R(2) = R(3) = COMe (H(2)L(1), 1), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(2), 2), R(2) = COMe, R(3) = COOEt (H(2)L(4), 4); R(1) = HO-2-O(2)N-4-C(6)H(3), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(3), 3), R(2) = COMe, R(3) = COOEt (H(2)L(5), 5), R(2)R(3) = COMe (H(2)L(6), 6A)], and their Cu(II) complexes [Cu(2)(CH(3)OH)(2)(μ-L(1))(2)] 7, [Cu(2)(H(2)O)(2)(μ-L(2))(2)] 8, [Cu(H(2)O)(L(3))] 9, [Cu(2)(μ-L(4))(2)](n) 10, [Cu(H(2)O)(L(5))] 11, [Cu(2)(H(2)O)(2)(μ-L(6))(2)] 12A and [Cu(H(2)O)(2)(L(6))] 12B were synthesized and fully characterized, namely, by X-ray analysis (4, 5, 7-12B). Reaction of 6A, Cu(NO(3))(2) and ethylenediamine (en) leads, via Schiff-base condensation, to [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}] (13), and reactions of 12A and 12B with en give the Schiff-base polymer [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}](n) 14. The dependence of the OHADB tautomeric equilibria on temperature, electronic properties of functional groups, and solvent polarity was studied. The OHADB from unsymmetrical β-diketones exist in solution as a mixture of enol-azo and hydrazo tautomeric forms, while in the solid state all the free and coordinated OHADB crystallize in the hydrazo form. The relative stabilities of various tautomers were studied by density functional theory (DFT). 7-14 show catalytic activities for peroxidative oxidation (in MeCN/H(2)O) of cyclohexane to cyclohexanol and cyclohexanone, for selective aerobic oxidation of benzyl alcohols to benzaldehydes in aq. solution, mediated by TEMPO radical, under mild conditions and for the MW-assisted solvent-free synthesis of ketones from secondary alcohols with tert-butylhydroperoxide as oxidant.  相似文献   

14.
The X-ray crystal structure of the trans-diaqua complex [VO(DPA)(H2O2)]·2H2O (1) (DPA=dipicolinate dianion) has been determined. Comparison with the known structure of [VO(DPA)(o-phen)]·3H2O (2), obtained from (1) by displacement of the two coordinated aqua molecules, shows that the coordination sphere around vanadium is reorganised during this reaction.  相似文献   

15.
Vanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L. In the solid state, compound 1 has two conformational isomers 1a and 1b; both have been characterized by X-ray crystallography. Compound 1a has the syn conformation that enforces the donor atoms around the metal center to adopt a distorted tbp structure (tau = 0.55). Isomer 1b on the other hand has an anti conformation with almost a regular square pyramidal geometry (tau = 0.06) around vanadium. In solution, however, 1 prefers to be in the square pyramidal form. A second variety of vanadyl complex [VO(L(cyclic))(2)](I(3))(2) (2) with a new bidentate O,N donor ligand involving isothiazolium moiety has been obtained by a ligand-based oxidation of the precursor complex 1 with iodine. Preliminary X-ray and FAB mass spectroscopic data of 2 have supported the formation of a heterocyclic moiety by a ring closure reaction involving a N-S bond. Vanadium(III) complex [V(acac)(HL)(2)] (3) has been obtained through partial ligand displacement of [V(acac)(3)] with H(2)L. Compound 3 has almost a regular octahedral structure completed by two bidentate HL ligands along with an acetylacetonate molecule. Electronic spectra, magnetism, EPR, and redox properties of these compounds are reported.  相似文献   

16.
Reaction of [V(X)(OR)3] (X=O, Np-tolyl; R=Et, nPr or tBu) with p-tert-butylhexahomotrioxacalix[3]areneH3, LH3, affords the air-stable complexes [{V(X)L}n] (X=O, n=1 (1); X=Np-tolyl, n=2 (2)). Alternatively, 1 is readily available either from interaction of [V(mes)3THF] with LH3, and subsequent oxidation with O2 or upon reaction of LLi3 with [VOCl3]. Reaction of [V(Np-tolyl)(OtBu)3] with 1,3-dimethylether-p-tert-butylcalix[4]areneH2, Cax(OMe)2(OH)2, afforded [{VO(OtBu)}2(mu-O)Cax(OMe)2(O)2].2 MeCN (42 MeCN), in which two vanadium atoms are bound to just one calix[4]arene ligand; the n-propoxide analogue of 4, namely [{VO(OnPr)}2(mu-O)Cax(OMe)2(O)2].1.5 MeCN (51.5 MeCN), has also been isolated from a similar reaction using [V(O)(OnPr)3]. Reaction of [VOCl3], LiOtBu, (Me3Si)2O and Cax(OMe)2(OH)2 gave [{VO(OtBu)Cax(OMe)2(O)2}2Li4O2].8 MeCN (68 MeCN), in which an Li4O4 cube (two of the oxygen atoms are derived from the calixarene ligands) is sandwiched between two Cax(OMe)2(O)2. The reaction between [V(Np-tolyl)(OtBu)3] and Cax(OMe)2(OH)2, afforded [V(Np-tolyl)(OtBu)2Cax(OMe)2(O)(OH)]5 MeCN (75 MeCN), in which two tert-butoxide groups remain bound to the tetrahedral vanadium atom, which itself is bound to the calix[4]arene through only one phenolic oxygen atom. Reaction of p-tert-butylcalix[4]areneH4, Cax(OH)4 and [V(Np-tolyl)(OnPr)3] led to loss of the imido group and formation of the dimeric complex [{VCax(O)4(NCMe)}2].6 MeCN (86 MeCN). Monomeric vanadyl oxo- and imidocalix[4]arene complexes [V(X)Cax(O)3(OMe)(NCMe)] (X=O (11), Np-tolyl (12)) were obtained by the reaction of the methylether-p-tert-butylcalix[4]areneH3, Cax(OMe)(OH)3, and [V(X)(OR)3] (R=Et or nPr). Vanadyl calix[4]arene fragments can be linked by the reaction of 2,6-bis(bromomethyl)pyridine with Cax(OH)4 and subsequent treatment with [VOCl3] to afford the complex [{VOCax(O)4}2(mu-2,6-(CH2)2C5H3N)].4 MeCN (134 MeCN). The compounds 1-13 have been structurally characterised by single-crystal X-ray diffraction. Upon activation with methylaluminoxane, these complexes displayed poor activities, however, the use of dimethylaluminium chloride and the reactivator ethyltrichloroacetate generates highly active, thermally stable catalysts for the conversion of ethylene to, at 25 degrees C, ultra-high-molecular-weight (>5, 500,000), linear polyethylene, whilst at higher temperature (80 degrees C), the molecular weight of the polyethylene drops to about 450,000. Using 1 and 2 at 25 degrees C for ethylene/propylene co-polymerisation (50:50 feed) leads to ultra-high-molecular-weight (>2,900,000) polymer with about 14.5 mol% propylene incorporation. The catalytic systems employing the methyleneoxa-bridged complexes 1 and 2 are an order of magnitude more active than the bimetallic complexes 5 and 13, which, in turn, are an order of magnitude more active than pro-catalysts 8, 11 and 12. These differences in activity are discussed in terms of the structures of each class of complex.  相似文献   

17.
A series of mixed alkoxyalkoxo chloro complexes of vanadium(V), [VOCl2(OCH2CH2OR)]2 (R = Me, Et, iPr, Bz), [VOCl2(OCMe2CH2OMe)]2 and [VOCl2(OCH2(cyclo-C4H7O)]2, were synthesised and characterised. The title compounds can be obtained either from VOCl3 and the alkoxyalcohols by HCl elimination or from the corresponding lithium alkoxides and VOCl3 by salt metathesis reaction. X-Ray diffraction studies revealed the title compounds to be dimers with chloride bridging ligands and intramolecular ether coordination. Electrochemical results obtained by cyclic voltammetry indicate irreversible, reductive behaviour. The interactions of the title compounds with oxygen, nitrogen and phosphorus donor ligands were examined. Phosphorus and nitrogen donors lead to reduction products whereas tetrahydrofuran coordinates to the vanadium(V) centre by breaking the chloride bridge. All tetrahydrofuran complexes, [VOCl2(OCH2CH2OR)(thf)] (R = Me, Et, iPr) and [VOCl2(OCMe2CH2OMe)(thf)], have been characterised by single-crystal X-ray diffraction. The solid-state structures of these complexes show that they consist of six-coordinate monomers. Reaction of [VOCl2(OCH2CH(2)OMe)]2 with Me3SiCH2MgCl gave [VO(CH2SiMe3)3], which has been structurally characterised. The compounds were tested as catalysts for epoxidation and polymerisation reactions. They convert unfunctionalised olefins into the corresponding epoxides with moderate activity. They are good pre-catalysts for the polymerisation of ethene and oligomerise 1-hexene.  相似文献   

18.
Monoperoxovanadium(V) complexes, [NH3(CH2)2NH3][VO(O2)(ox)(pic)].2H2O (1) and [NH3(CH2)2NH3][VO(O2)(ox)(pca)] (2) [NH3(CH2)2NH3 = ethane-1,2-diammonium(2+), ox=oxalate(2-), pic=pyridine-2-carboxylate(1-), pca=pyrazine-2-carboxylate(1-)], were synthesized and characterized by X-ray analysis, IR and Raman spectroscopies. The five equatorial positions of the pentagonal bipyramid around the vanadium atoms are occupied by the eta2-peroxo ligand, two oxygen atoms of the ox, and the nitrogen atom of the pic or pca ligands, respectively. The oxo ligand and the oxygen atom of pic or pca are in the axial positions. Networks of X-HO (X=C, N or O) hydrogen bonds, and pi-pi interactions between aromatic rings in and anion-pi interactions in , determine the molecular packings and build up the supramolecular architecture. Three stereochemical rules for occupation of the donor sites in two-heteroligand [VO(O2)(L1)(L2)] complexes (L1, L2 are bidentate neutral or differently charged anionic heteroligands providing an OO, NN or ON donor set) are discussed. and crystallize as racemic compounds. The 51V NMR spectra proved that the parent complex anions of and partially decompose on dissolution in water to the monoperoxo-ox, -pic or -pca complexes.  相似文献   

19.
Aminocyclopentadienyl ruthenium complexes, which can be used as room-temperature racemization catalysts with lipases in the dynamic kinetic resolution (DKR) of secondary alcohols, were synthesized from cyclopenta-2,4-dienimines, Ru(3)(CO)(12), and CHCl(3): [2,3,4,5-Ph(4)(eta(5)-C(4)CNHR)]Ru(CO)(2)Cl (4: R = i-Pr; 5: R = n-Pr; 6: R = t-Bu), [2,5-Me(2)-3,4-Ph(2)(eta(5)-C(4)CNHR)]Ru(CO)(2)Cl (7: R = i-Pr; 8: R = Ph), and [2,3,4,5-Ph(4)(eta(5)-C(4)CNHAr)]Ru(CO)(2)Cl (9: Ar = p-NO(2)C(6)H(4); 10: Ar = p-ClC(6)H(4); 11: Ar = Ph; 12: Ar = p-OMeC(6)H(4); 13: Ar = p-NMe(2)C(6)H(4)). The tests in the racemization of (S)-4-phenyl-2-butanol showed that 7 is the most active catalyst, although the difference decreased in the DKR. Complex 4 was used in the DKR of various alcohols; at room temperature, not only simple alcohols but also functionalized ones such as allylic alcohols, alkynyl alcohols, diols, hydroxyl esters, and chlorohydrins were successfully transformed to chiral acetates. In mechanistic studies for the catalytic racemization, ruthenium hydride 14 appeared to be a key species. It was the major organometallic species in the racemization of (S)-1-phenylethanol with 4 and potassium tert-butoxide. In a separate experiment, (S)-1-phenylethanol was racemized catalytically by 14 in the presence of acetophenone.  相似文献   

20.
通过水热方法合成了2个由多铌酸盐和过渡金属配合物形成的有机-无机杂化配合物[Cu(TETA)]4[VNb12(VO)4O40][OH]·10H2O(1)和[Cu(TETA)]4[VNb12(VO)6O40][OH]5·5H2O(2)(TETA=三亚乙基四胺). 化合物1和2的多阴离子分别是由4个{VO5}帽和6个{VO5}帽加盖在Keggin型多铌酸盐的方形缺口上形成的, 它们通过多酸阴离子中Nb-Ot (Ot =端氧)与[Cu(TETA)]2+配合物的金属中心配位构筑形成三维结构. 价键计算结果表明, Keggin中心的钒为+5价, 帽位的钒为+4价, X射线光电子能谱分析(XPS)结果也证实了这一结论. 通过单晶X射线衍射分析、红外光谱(IR)、粉末X射线衍射(PXRD)、热重(TG)分析和元素分析对这2个化合物的结构和性质进行了表征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号