首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exploration in two hydro(solvo)thermal reaction systems As/S/Mn(2+)/phen/methylamine aqueous solution and As/S/Mn(2+)/2,2'-bipy/H(2)O affords five new manganese thioarsenates with diverse structures, namely, (CH(3)NH(3)){[Mn(phen)(2)](As(V)S(4))}·phen (1 and 1'), (CH(3)NH(3))(2){[Mn(phen)](2)(As(V)S(4))(2)} (2), {[Mn(phen)(2)](As(III)(2)S(4))}(n) (3), {[Mn(phen)](3)(As(III)S(3))(2)}·H(2)O (4), and {[Mn(2,2'-bipy)(2)](2)(As(V)S(4))}[As(III)S(S(5))] (5). Compound 1 comprises a {[Mn(phen)(2)](As(V)S(4))}(-) complex anion, a monoprotonated methylamine cation and a phen molecule. Compound 2 contains a butterfly like {[Mn(phen)](2)(As(V)S(4))(2)}(2-) anion charge compensated by two monoprotonated methylamine cations. Compound 3 is a neutral chain formed by a helical (1)(∞)(As(III)S(2)(-)) vierer chain covalently bonds to [Mn(II)(phen)](2+) complexes via all its terminal S atoms. Compound 4 features a neutral chain showing the stabilization of noncondensed (As(III)S(3))(3-) anions in the coordination of [Mn(II)(phen)](2+) complex cations. Compound 5 features a mixed-valent As(III)/As(V) character and an interesting chalcogenidometalates structure, where a polycation formed by the connection of two [Mn(2,2'-bipy)(2)](2+) complex cation and a (As(V)S(4))(3-) anion acts as a countercation for a polythioarsenate anion, [As(III)S(S(5))](-). The title compounds exhibit optical gaps in the range 1.58-2.48 eV and blue photoluminescence. Interestingly, compound 1 displays a weak second harmonic generation (SHG) response being about 1/21 times of KTP (KTiOPO(4)). Magnetic measurements show paramagnetic behavior for 1 and dominant antiferromagnetic behavior for 2-5. Of particular interest is 4, which is the first manganese chalcogenide showing spin-canting characteristic.  相似文献   

2.
Liu GN  Jiang XM  Wu MF  Wang GE  Guo GC  Huang JS 《Inorganic chemistry》2011,50(12):5740-5746
A novel one-dimensional (1-D) mixed-valent thioarsenate (III, V), {[Mn(phen)](3)(As(V)S(4))(As(III)S(3))}(n)·nH(2)O (1), with a noncentrosymmetric (NCS) polar packing arrangement has been obtained under solvothermal conditions. The noncondensed (As(III)S(3))(3-) anion in 1 is stabilized by coordinating to [Mn(II)(phen)](2+) complex cations and exhibits an unprecedented μ(3)-1,2κS:2,3κS':3κS' linkage mode. Compound 1 represents the first example of the stabilization of noncondensed (MQ(3))(3-) (M = As, Sb; Q = S, Se) species only in the coordination of TM(II) complex cations (TM = transition-metal) and the first observation of the coexistence of the (As(V)S(4))(3-) tetrahedron and the noncondensed (As(III)S(3))(3-) pyramid in a single compound. Of particular interest, compound 1 is also an antiferromagnet with T(N) = 31 K, and exhibits photoluminescence (PL) with a maximum emission at about 438 nm and a second harmonic generation (SHG) response.  相似文献   

3.
Jia D  Zhao J  Pan Y  Tang W  Wu B  Zhang Y 《Inorganic chemistry》2011,50(15):7195-7201
The polyselenidoarsenates [Fe(phen)(3)][As(2)Se(6)] (1), [Zn(phen)(dien)][As(2)Se(6)]·2phen (2), [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](2)[As(2)Se(6)]·H(2)O (3), and [Ni(phen)(3)][As(2)Se(2)(μ-Se(3))(μ-Se(5))] (4) (dien = diethylenetriamine and phen = 1,10-phenanthroline) were prepared by the reaction of As(2)O(3), Se, dien, and phen in the presence of transition metals in a methanol solvent under solvothermal conditions. Compounds 1-3 consist of [As(2)Se(6)](2-) anions with [Fe(phen)(3)](2+), [Zn(phen)(dien)](2+), and [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](+) complex counter cations, respectively. The [As(2)Se(6)](2-) anion is formed from two As(III)Se(3) trigonal pyramids linked through two Se-Se bonds. Compound 3 is the first example of a mixed-valent selenidoarsenate(III,V) and exhibits the coexistence of As(III)Se(3) trigonal pyramidal and As(V)Se(4) tetrahedral units. Compound 4 is composed of a helical chain of [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) and octahedral [Ni(phen)(3)](2+) cations. The [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) chain is constructed from AsSe(+) units alternatively linked by μ-Se(3)(2-) and μ-Se(5)(2-) bridging ligands. When the structures of compounds 1-4 are compared, the transition metal ions show different structural directing effects during the synthesis of arsenic polyselenides in methanol. Compounds 1, 2, 3, and 4 exhibit semiconducting properties with band gaps of 1.88, 2.29, 1.82, and 2.01 eV, respectively.  相似文献   

4.
Zhang X  Lei ZX  Luo W  Mu WQ  Zhang X  Zhu QY  Dai J 《Inorganic chemistry》2011,50(21):10872-10877
Two 1-D selenidoindates {[M(phen)(3)]In(2)Se(5)·H(2)O}(n) (M = Ni, Fe) were synthesized by a solvothermal method. The 1-D {[In(2)Se(5)](2-)}(n) anion is a new type of single 1-D structure constituted by an alternately fused four-membered In(2)Se(2) ring and five-membered In(2)Se(3) ring. The chalcogenoindates were separated as mechanical racemic mixtures of single enantiomer crystals, in which the R-helix of 1-D InSe anion is directed by the related clockwise (Δ) cations of [M(phen)(3)](2+) or the L-helix of 1-D anion is directed by the related anticlockwise (Λ) cation. The π···π, C···Se, and C-H···Se oriented interactions of metal complex cations with selenidoindate anions play an important role in the formation of the chiral crystals. The embedded [M(phen)(3)](2+) cations improve the optical absorption of the 1-D semiconductor materials.  相似文献   

5.
Two systems, Ln/Sn/Se/en and Ln/Sn/Se/dien, were investigated under solvothermal conditions, and novel lanthanide selenidostannates [{Ce(en)(4)}(2)(μ-Se(2))]Sn(2)Se(6) (1a), [{Ln(en)(3)}(2)(μ-OH)(2)]Sn(2)Se(6) (Ln = Pr(1b), Nd(1c), Gd(1d); en = ethylenediamine), [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) (Ln = Ce(2a), Nd(2b)), and [Hdien][Gd(dien)(2)(μ-SnSe(4))] (2c) (dien = diethylenetriamine) were prepared and characterized. Two structural types of lanthanide selenidostannates were obtained across the lanthanide series in both systems. In the Ln/Sn/Se/en system, two types of binuclear lanthanide complex cations [Ce(2)(en)(8)(μ-Se(2))](4+) and [{Ln(en)(3)}(2)(μ-OH)(2)](4+) (Ln = Pr, Nd, Gd) were formed depending on the Ln(3+) ions. The complex cations are compensated by the [Sn(2)Se(6)](4-) anions. In the Ln/Sn/Se/dien system, coordination polymer [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) and ionic complex [Hdien][Gd(dien)(2)(μ-SnSe(4))] are obtained along the lanthanide series, among which the μ(4)-Sn(2)Se(9), μ-Sn(2)Se(6) and μ-SnSe(4) ligands to the Ln(3+) ions were observed. The formation of title complexes shows the effects of lanthanide metal size and amino ligand denticity on the lanthanide selenidostannates. Complexes 1a-2c exhibit semiconducting properties with band gaps between 2.08 and 2.48 eV.  相似文献   

6.
Zhou J  Bian GQ  Dai J  Zhang Y  Tang AB  Zhu QY 《Inorganic chemistry》2007,46(5):1541-1543
Although a number of chalcogenostannates have been obtained by using [M(amine)m]n+ as the structure director, these materials with chiral metal complex ions are usually achiral because they are a racemic mix of chiral complex cations. A chiral selenidostannate, [Mn(tepa).Sn3Se7]n (1; tepa = tetraethylenepentamine), containing incorporated [Mn(tepa)]2+ units, is reported herein. The unique structure is just like a grapevine appended with chiral grapes. In the same reaction, a centrosymmetric compound, [Mn(tepa)]2(mu2-Sn2Se6) (2), in which the Sn2Se64- anion acts as a bridge coordinating to [Mn(tepa)]2+ cations, has also been obtained. This is a reaction-time-related process in which compound 2 transformed gradually to 1 after prolonging the reaction time. This phenomenon demonstrates a transformation from achiral to chiral and dimeric to polymeric selenidostannate.  相似文献   

7.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

8.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

9.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

10.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

11.
To systematically explore the assembly mechanism of a rutile-type open framework of {[Zn(3)(pbdc)(2)]·2H(3)O}(n) (3) (H(4)pbdc = 5-phosphonobenzene-1,3-dicarboxylic acid) constructed by 3-connected pbdc ligands and 6-connected Zn(3)(CO(2))(4)(PO(3))(2) secondary building units (Zn(3)-SBUs), three major factors including solvothermal procedures, types of solvents and amines, are taken into consideration. Seven novel structures, namely {[Zn(5)(pbdc)(2)(OH)(2)(H(2)O)(4)]·4H(2)O}(n) (1), {[Zn(3)(pbdc)(2)·H(2)O]·(Htea)·H(3)O·2-5(H(2)O)}(n) (2), {[Zn(3)(pbdc)(2)](H(3)O)(2)(dma)}(n) (4), {[Zn(2)(pbdc)(taea)]·3H(2)O}(n) (5), {[Zn(3)(pbdc)(2)(Hpda)(2)]·2H(2)O}(n) (6), {[Zn(5)(pbdc)(2)(Hpbdc)(2)]·2H(2)pz·9H(2)O}(n) (7), {[Zn(3)(pbdc)(2)]·Hpd·H(3)O·4H(2)O}(n) (8) are obtained. The results indicate that the layered-solvothermal method and the isopropanol solvent play crucial roles in the construction of the special anionic open framework of [Zn(3)(pbdc)(2)](2-). Changing these two factors led molecular assembly away from the rutile-type open framework. However, amines play a variable role in the framework, which means that by using appropriate amines, molecular assembly could generate the open framework of [Zn(3)(pbdc)(2)](2-) with pores decorated by amines. These results suggest a different approach towards decorating pores in anionic frameworks with precise structural information.  相似文献   

12.
Two complexes {[Co(II)(phen)(3)][Co(III)(phen)(CN)(4)](2)}·phen·11H(2)O (1) and [Co(II)(μ-CN)(2)(Co(III))(2)(phen)(4)(CN)(6)]·C(2)H(5)OH·2H(2)O (2) were synthesized with identical starting materials but with a different order of addition. Their crystal structures, spectroscopic analysis, DFT calculations, and investigations of their magnetic properties are reported herein. The X-ray diffraction studies reveal that complex 1 mainly consists of discrete [Co(II)(phen)(3)](2+) cations and [Co(III)(phen)(CN)(4)](-) anions, while complex 2 is dominantly comprised of discrete neutral V-shaped trinuclear units [Co(II)(μ-CN)(2)(Co(III))(2)(phen)(4)(CN)(6)]. The first low-spin Co(II) fragment with homoleptic 1,10-phenanthroline ligands in 1 is observed at room temperature, owing to charge transfer from the neighboring anion via adventitious contacts and anion-π interactions. This is verified by structures, detailed theoretical analyses concerning frontier molecular orbital energy differences and Mulliken charge variations of the N atoms within the Co(II)N(6) sphere, and magnetism. Meanwhile, these kinds of supramolecular interactions are not found in complex 2, so it shows the ordinary magnetic behavior of the high-spin Co(II) ion. Our investigations highlight that for quantitative comprehension of spin-state energetic ordering in transition metal complexes, the supramolecular interactions must be taken into account in addition to classical ligand field theory. Moreover, we find that the [Co(II)(phen)(3)](2+) dication is sensitive to its surroundings in the solid state, which is beneficial for magnetic adjustment for the further synthesis of tunable molecular magnets and spin crossover systems.  相似文献   

13.
Four organic-decorated quaternary TM-Hg-Sb-Q compounds, namely, [Mn(phen)](2)HgSb(2)S(6) (phen = 1,10-phenanthroline) (1) and isomorphic [TM(tren)]HgSb(2)Se(5) (TM = Mn (2), Fe (3), Co (4); tren = tris(2-aminoethyl)amine) have been solvothermally prepared, and structurally characterized by single crystal X-ray diffraction analyses. 1 and 2 (3, 4) feature distinct one-dimensional neutral infinite ribbon-like structures constructed by the combination of Sb(3+), Hg(2+) and TM(2+), the latter two of which adopt different coordination modes. In compound 1, organic-decorated {[Mn(phen)](2)Sb(2)S(6)} clusters assembled by {MnS(4)N(2)} octhedra and {SbS(3)} pyramids are bridged by the {HgS(2)} groups in a linear fashion. Differently, the {SbSe(3)} pyramids, {HgSe(4)} tetrahedra and {TMSeN(4)} trigonal-bipyramids in 2 (3, 4) are combined to form novel {[TM(tren)](2)Hg(2)Sb(4)Se(12)} clusters, which are interconnected to form {[TM(tren)]HgSb(2)Se(5)}(n) ribbons. The results of optical diffuse-reflectance measurements and band structure calculations based on DFT methods indicate that 1 and 2 (3, 4) are indirect and direct semiconductors, respectively. Photocatalytic experiments have shown the ability of 2 in photodegradation of Rhodamine B (RhB).  相似文献   

14.
Zhou J  Liu X  An L  Hu F  Yan W  Zhang Y 《Inorganic chemistry》2012,51(4):2283-2290
A series of new lanthanide thiostannates(IV), [Y(2)(dien)(4)(μ-OH)(2)]Sn(2)S(6) (1, dien = diethyl-enetriamine), (tetaH)(2)[Ln(2)(teta)(2)(tren)(2)(μ-Sn(2)S(6))]Sn(2)S(6) [Ln = Eu (2), Sm (3); teta = triethylenetetramine; tren = tris(2-aminoethyl)amine] and [Eu(2)(tepa)(2)(μ-OH)(2)(μ-Sn(2)S(6))](tepa)(0.5)·H(2)O (4, tepa = tetraethylene-pentamine) were solvothermally synthesized and structurally characterized. 1 consists of a binuclear [Y(2)(dien)(4)(μ(2)-OH)(2)](4+) cation and a discrete dimeric [Sn(2)S(6)](4-) anion. Both 2 and 3 are isostructural and composed of [Ln(2)(teta)(2)(tren)(2)(μ-Sn(2)S(6))](2+) cations, protonated triethylenetetramines (tetaH), and discrete dimeric [Sn(2)S(6)](4-) anions. A Sn(2)S(6)(4-) anion bridges two [Ln(teta)(tren)](3+) cations via the trans-S(t) (t = terminal) atoms to form the first examples of inorganic-organic hybrid thiostannate cations [Ln(2)(teta)(2)(tren)(2)(μ-Sn(2)S(6))](2+). 4 consists of one-dimensional (1-D) neutral chains [Eu(2)(tepa)(2)(μ-OH)(2)(μ-Sn(2)S(6))](n) built up from the linkage of dinuclear complex cations [Eu(2)(tepa)(2)(μ(2)-OH)(2)](4+) and bridging anions [Sn(2)S(6)](4-), free tepa molecules, and lattice water molecules. The present compounds exhibit wide-band gap semiconducting properties with absorption band edges between 2.40 and 2.91 eV.  相似文献   

15.
Halogenated 1,3,5-triazapentadienyl ligands [N{(C(3)F(7))C(C(6)F(5))N}(2)](-), [N{(CF(3))C(C(6)F(5))N}(2)](-) and [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)](-), alone or in combination with other N-donors like CH(3)CN, CH(3)(CH(2))(2)CN, and N(C(2)H(5))(3), have been used in the stabilization of thermally stable, two-, three- or four-coordinate silver(i) adducts. X-Ray crystallographic analyses of {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag}(n), {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCCH(3))}(n), {[N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]Ag(NCCH(3))}(n), {[N{(CF(3))C(C(6)F(5))N}(2)]Ag(NCCH(3))(2)}(n) and {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCC(3)H(7))}(n) revealed the presence of bridging 1,3,5-triazapentadienyl ligands bonded to silver through terminal nitrogen atoms. These adducts are polymeric in the solid state. [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]AgN(C(2)H(5))(3) is monomeric and features a 1,3,5-triazapentadienyl ligand bonded to Ag(I) in a κ(1)-fashion via only one of the terminal nitrogen atoms. The solid state structure of [N{(C(3)F(7))C(C(6)F(5))N}(2)]H has also been reported and it forms polymeric chains via inter-molecular N-H···N hydrogen-bonding.  相似文献   

16.
The synthesis and characterization of a series of cyclo-alkylammonium pentaborate salts {[cyclo-C(n)H(2n-1)NR(3)][B(5)O(6)(OH)(4)] (R = H, n = 3, 5-7 (1-4); R = Me, n = 6 (5))} are reported. Compounds 1, 2 and 5 have been further characterized by single-crystal XRD studies. Attempted recrystallization of 3 and 4 yielded small crops of the unexpected heptaborate salts, [cyclo-C(6)H(11)NH(3)](2)[B(7)O(9)(OH)(5)]·3H(2)O·B(OH)(3) (6) and [cyclo-C(7)H(13)NH(3)](2)[B(7)O(9)(OH)(5)]·2H(2)O·2B(OH)(3) (7) which were also characterized crystallographically. All compounds show extensive supramolecular H-bonded anionic lattices templated by the cations. H-bond interactions are described in detail. TGA-DSC analysis of the pentaborates 1-5 showed that they thermally decomposed in air at 800 °C to 2.5B(2)O(3), in a 2 step process involving dehydration (<250 °C) and oxidative decomposition (250-600 °C). BET analysis of materials derived from the pentaborates had internal porosities of <1 m(2) g(-1).  相似文献   

17.
The reactions of manganese(II) acetate or perchlorate, sodium azide or sodium cyanate, and the zwitterionic dicarboxylate ligand 1,4-bis(4-carboxylatopyridinium-1-methylene)benzene (L) under different conditions yielded three different Mn(II) coordination polymers with mixed carboxylate and azide (or cyanate) bridges: {[Mn (L(1))(0.5)(N(3))(OAc)]·3H(2)O}(n) (1), {[Mn(4)(L(1))(N(3))(8)(H(2)O)(4)(CH(3)OH)(2)]·[L(1)]}(n) (2), and {[Mn(3)(L(1))(NCO)(6)(H(2)O)(4)]·[L(1)]·[H(2)O](2)}(n) (3). The compounds exhibit diverse structures and magnetic properties. In 1, the 1D uniform anionic [Mn(N(3))(COO)(2)](n) chains with the (μ-EO-N(3))(μ-COO)(2) triple bridges (EO = end-on) are interlinked by the dipyridinium L ligands into highly undulated 2D layers. Magnetic studies on 1 reveal that the mixed triple bridges induce antiferromagnetic coupling between Mn(II) ions. Compounds 2 and 3 consist of 1D neutral polymeric chains and co-crystallized zwitterions, and the chains are formed by the L ligands interlinking linear polynuclear units. The polynuclear unit in 2 is tetranuclear with (μ-EO-N(3))(2) as central bridges and (μ-EO-N(3))(2)(μ-COO) as peripheral bridges, while that in 3 is trinuclear with (μ-NCO)(2)(μ-COO) bridges. Magnetic studies demonstrate that the magnetic coupling through the mixed azide/isocyanate and carboxylate bridges in 2 and 3 is antiferromagnetic. An expression of magnetic susceptibility based on a 2-J model for linear tetranuclear systems of classical spins has been deduced and applied to 2.  相似文献   

18.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

19.
Six novel metal-organic frameworks (MOFs), {Mn(bpydb)(bpyHdbH)}(n) (1) {[Co(2)(bpydb)(2)](H(2)O)(0.5)}(n) (2), {[Ni(0.5)(bpydbH)(H(2)O)](DMF)(2)}(n) (3), {[Cu(2)(bpydb)(2)](H(2)O)(0.5)}(n) (4), {Zn(bpyHdb)(2)}(n) (5) and {[Cd(0.5)(bpydb)(0.5)(DMF)](H(2)O)}(n) (6), were successfully synthesized by assembling transition metal salts with trigonal heterofunctional ligand 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid (bpydbH(2)) under hydrothermal and/or solvothermal conditions. Compound 1 features a rare 4-fold interpenetrating (3,5)-connected framework with hms-type topology. Isostructural compounds 2 and 4, constructed by M(2)(COO)(4) secondary building units, exhibit a robust 3D framework with alb topological type in 2-fold interpenetrating mode. Compound 3 consists of 2D (4,4) networks, which are further assembled into the new topological framework with the symbol (5(3)·6(2)·8)(5(3)·6(3))(2) through O-HO interactions. Compound 5 manifests a novel 4-connected interpenetrating framework, constructed by 2D (4,4) layers and interbedded N-HO interactions. Non-interpenetrating honeycomb networks are observed in compound 6, and further packed into a 3D framework featuring 1D channels. The magnetic susceptibility of compound 2 indicates antiferromagnetic interactions between cobalt ions. The photoluminescent properties of 5 and 6 were investigated in the solid state at room temperature.  相似文献   

20.
The synthesis and structural analysis (single crystal X-ray data) of two mononuclear ([Cu(L(1))(CN)]BF(4) and [Cu(L(3))(CN)](BF(4))) and three related, cyanide-bridged homodinuclear complexes ([{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O, [{Cu(L(2))}(2)(CN)](BF(4))(3) and [{Ni(L(3))}(2)(CN)](BF(4))(3)) with a tetradentate (L(1)) and two isomeric pentadentate bispidine ligands (L(2), L(3); bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives) are reported, together with experimental magnetic, electron paramagnetic resonance (EPR), and electronic spectroscopic data and a ligand-field-theory-based analysis. The temperature dependence of the magnetic susceptibilities and EPR transitions of the dicopper(II) complexes, together with the simulation of the EPR spectra of the mono- and dinuclear complexes leads to an anisotropic set of g- and A-values, zero-field splitting (ZFS) and magnetic exchange parameters (Cu1: g(z) = 2.055, g(x) = 2.096, g(y) = 2.260, A(z) = 8, A(x) = 8, A(y) = 195 × 10(-4) cm(-1), Cu2: g and A as for Cu(1) but rotated by the Euler angles α = -6°, β = 100°, D(exc) = -0.07 cm(-1), E(exc)/D(exc) = 0.205 for [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O; Cu1,2: g(z) = 2.025, g(x) = 2.096, g(y) = 2.240, A(z) = 8, A(x) = 8, A(y) = 190 × 10(-4)cm(-1), D(exc) = -0.159 cm(-1), E(exc)/D(exc) = 0.080 for [{Cu(L(2))}(2)(CN)](BF(4))(3)). Thorough ligand-field-theory-based analyses, involving all micro states and all relevant interactions (Jahn-Teller and spin-orbit coupling) and DFT calculations of the magnetic exchange leads to good agreement between the experimental observations and theoretical predictions. The direction of the symmetric magnetic anisotropy tensor D(exc) in [{Cu(L(2))}(2)(CN)](BF(4))(3) is close to the Cu···Cu vector (22°), that is, nearly perpendicular to the Jahn-Teller axis of each of the two Cu(II) centers, and this reflects the crystallographically observed geometry. Antisymmetric exchange in [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O causes a mixing between the singlet ground state and the triplet excited state, and this also reflects the observed geometry with a rotation of the two Cu(II) sites around the Cu···Cu axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号