首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The segmental dynamics of poly(ethylene glycol) (PEG) chains adsorbed on the clay platelets within nanocomposite PEG/Laponite hydrogels was investigated over the tens of microseconds time scale, using combined solution and solid-state NMR approaches. In a first step, the time evolution of the molecular mobility displayed by the PEG chains following the addition to a Laponite aqueous dispersion was monitored during the aggregation of the clay disks and the hydrogel formation, by means of (1)H solution-state NMR. Part of the PEG repeat units were found to get strongly constrained during the gelation process. Comparisons between this time evolution of the PEG local dynamics in the PEG/Laponite/water systems and the increase of the macroscopic storage shear modulus, mainly governed by the assembling of the Laponite disks, indicate that the slowing down of the segmental motions arises from adsorbed PEG repeat units or chain portions strongly constrained between aggregated clay layers. In a second step, after completion of the gelation process, the molecular motions of the adsorbed PEG chains were probed by (1)H solid-state NMR spectroscopy. (1)H double-quantum experiments indicate that the adsorbed PEG repeat units, though reported to be frozen over a few tens of nanoseconds, still display significant reorientational motions over the tens of microseconds time scale. Using a comparison with a model system of amorphized PEG chains, the characteristic frequency of these segmental motions was found to range between 78.0 kHz and 100.7 MHz at 300 K. Interestingly, at this temperature, the level of reorientational motions detected for these adsorbed PEG chain portions was found to be as restricted as the one of bulk amorphous PEG chains, cooled at a slightly lower temperature (about 290 K).  相似文献   

2.
Injectable hydrogels for nonsteroidal anti‐inflammatory drugs’ (NSAIDs) delivery to minimize the side effects of NSAIDs and achieve long‐term sustained release at the targeted site of synovial joint are attractive for osteoarthritis therapy, but how to improve its mechanical strength remains a challenge. In this work, a kind of 1D natural clay mineral material, attapulgite (ATP), is introduced to a classical cyclodextrin pseudopolyrotaxane (PPR) system to form a reinforced supramolecular hydrogel for sustained release of diclofenac sodium (DS) due to its rigid, rod‐like morphology, and unique structure, which has great potential in tissue regeneration, repair, and engineering. Investigation on the interior morphology and rheological property of the obtained hydrogel points out that the ATP distributed in PPR hydrogel plays a role similar to the “reinforcement in concrete” and exhibits a positive effect on improving the mechanical properties of PPR hydrogel by regulating their interior morphology from a randomly distributed style to the well‐ordered porous frame structure. The hybrid hydrogels demonstrate good shear‐thinning and thixotropic properties, excellent biocompability, and sustained release behavior both in vitro and in vivo. Furthermore, preliminary in vivo treatment in an acute inflammatory rat model reveals that the ATP hybrid hydrogels present sustained anti‐inflammatory effect.  相似文献   

3.
Conductive hydrogels have attracted considerable attention owing to their potential for use as electronic skin and sensors.However,the loss of the inherent elasticity or conductivity in cold environments severely limits their working conditions.Generally,organic solvents or inorganic salts can be incorporated into hydrogels as cryoprotectants.However,their toxicity and/or corrosive nature as well as the significant water loss during the solvent exchange present serious difficulties.Herein,a liqu...  相似文献   

4.
Poly(ethylene glycol)‐grafted‐multiwalled carbon nanotube (MWNT‐g‐PEG) was synthesized by a coupling reaction and formed inclusion complexes (ICs) after selective threading of the PEG segment of the MWNT‐g‐PEG through the cavities of α‐cyclodextrins (α‐CDs) units. The polypseudorotaxane structures of the as‐obtained hydrogels were confirmed by 1H NMR, X‐ray diffraction and DSC analyses. The complexation of the PEG segments with α‐CDs and the hydrophobic interaction between the MWNT resulted in the formation of supramolecular hybrid hydrogels with a strong network. Thermal analysis showed that the thermal stability of the hydrogel was substantially improved by up to 100 °C higher than that of native hydrogel. The resultant hybrid hydrogels were found to be thixotropic and reversible, and could be applied as a promising injectable drug delivery system. The mechanical strength of the hybrid hydrogels was greatly improved in comparison with that of the corresponding native hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3145–3151, 2010  相似文献   

5.
采用光引发可逆加成-断裂链转移(RAFT)方法,在室温下先合成了链端含有三硫代碳酸酯基的大分子链转移剂聚(N,N'-二甲基丙烯酰胺)(PDMAM),然后与N-异丙基丙烯酰胺(NIPAM)、N,N'-二甲基双丙烯酰胺(BIS)交联共聚合,并通过聚乙二醇的制孔作用制得PNIPAM-g-PDMAM梳型/多孔水凝胶.采用FTI...  相似文献   

6.
腐植酸钠/聚丙烯酰胺/粘土杂化水凝胶的研究   总被引:3,自引:0,他引:3  
以过硫酸钾为引发剂、N,N′-亚甲基双丙烯酰胺为交联剂、丙烯酰胺单体和腐植酸钠、Laponite RD粘土为原料,用溶液聚合交联法合成了腐植酸钠/聚丙烯酰胺/粘土(SH-PAM-Clay)系列水凝胶.用场发射扫描电镜对其表面形貌进行了研究,并对水凝胶的吸水性和流变性能进行了测试和研究.结果表明这系列水凝胶都具有致密的网络结构和优良的吸水性能.  相似文献   

7.
Supramolecular hydrogels have been prepared on the basis of polymer inclusion complex (PIC) formation between poly(ethylene glycol) (PEG)-modified chitosans and alpha-cyclodextrin (alpha-CD). A series of PEG-modified chitosans were synthesized by coupling reactions between chitosan and monocarboxylated PEG using water-soluble carbodiimide (EDC) as coupling agent. With simple mixing, the resultant supramolecular assembly of the polymers and alpha-CD molecules led to hydrogel formation in aqueous media. The supramolecular structure of the PIC hydrogels was confirmed by differential scanning calorimetry (DSC), X-ray diffraction, and (13)C cross-polarized/magic-angle spinning (CP/MAS) NMR characterization. The PEG side-chains on the chitosan backbones were found to form inclusion complexes (ICs) with alpha-CD molecules, resulting in the formation of channel-type crystalline micro-domains. The IC domains play an important role in holding together hydrated chitosan chains as physical junctions. The gelation property was affected by several factors including the PEG content in the polymers, the solution concentration, the mixing ratio of host and guest molecules, temperature, pH, etc. All the hydrogels in acidic conditions exhibited thermo-reversible gel-sol transitions under appropriate conditions of mixing ratio and PEG content in the mixing process. The transitions were induced by supramolecular association and dissociation. These supramolecular hydrogels were found to have phase-separated structures that consist of hydrophobic crystalline PIC domains, which were formed by the host-guest interaction between alpha-CD and PEG, and hydrated chitosan matrices below the pK(a).The formation of inclusion complexes between alpha-cyclodextrin and PEG-modified chitosan leads to the formation of hydrogels that can undergo thermo-reversible supramolecular dissociation.  相似文献   

8.
王启刚 《高分子科学》2016,34(6):709-719
In this study, we chose corn stover hemicellulose for the preparation of hydrogels with admirable adsorption properties under mild alkaline conditions. Clay nanosheets were introduced to this system and hemicellulose/clay hybrid hydrogels were prepared. Morphological, mechanical properties and the methylene blue adsorption behaviors of the prepared hydrogels were studied. Results suggested that the addition of clay not only improved the mechanical strength of hemicellulose-based hydrogels, but also increased the adsorption capacity on methylene blue. Moreover, the adsorptions were confirmed to follow pseudo-second order equation for both gels with and without clay. The maximum adsorption capacities on methylene blue for hemicellulose-based hydrogels with or without clay reached 148.8 and 95.6 mg/g, respectively. These results implied that hemicellulose-based hydrogels could be used as promising adsorbents for the removal of methylene blue from waste water.  相似文献   

9.
Considering the large number of applications for hydrogels, a better understanding of the relation between molecular structure and mechanical properties for well‐defined hydrogel is essential. A new library has been compiled of poly(ethylene glycol) polymers (PEG) of different length end functionalized with diallyl, dithiol, and dimethacrylate, and crosslinked with complementary trifunctional crosslinkers. In this study, the hydrogels were initially analyzed by FT‐Raman and NMR to study the conversion ratio of the functional groups. The effects of solvent type, solid content concentration, curing time and length of the PEG chains on the final leaching, swelling and tensile properties of the hydrogels were studied. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

11.
聚乙二醇对PAMPS/PAM双网络水凝胶性能的影响   总被引:2,自引:0,他引:2  
采用紫外光引发聚合制备了聚乙二醇(PEG)改性的聚(2-丙烯酰胺-2-甲基丙磺酸)/聚丙烯酰胺(PAMPS/PAM)双网络水凝胶.测定并比较了PEG改性前后双网络水凝胶的溶胀动力学以及单网络水凝胶中丙烯酰胺(AM)的吸收量;用扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PEG改性前后双网络水凝胶的压缩及拉伸性能.结果表明,经PEG改性后的双网络水凝胶有较高的溶胀比;改性后单网络水凝胶更易吸收AM;改性后双网络水凝胶压缩形变率达到90%以上、拉伸形变率是未改性双网络水凝胶的2倍.  相似文献   

12.
In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, 1H Nuclear Magnetic Resonance (1H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules.  相似文献   

13.
The chemical composition of glycosaminoglycan (GAG) hydrogels was found to have a profound effect on the physical properties of gels. Hyaluronan (HA) and chondroitin sulfate (CS) were each modified with adipic dihydrazide (ADH) with carbodiimide chemistry. The resulting polymer was crosslinked with various concentrations of poly(ethylene glycol) dialdehyde (PEG‐diald) to produce a series of hydrogels. The physical properties of these GAG hydrogels varied in a concentration‐dependent fashion. Maximal crosslinking was observed at a theoretical crosslinking of 50% for the HA‐ADH‐PEG‐diald hydrogels and 75% for the CS‐ADH‐PEG‐diald hydrogels. Adding PEG‐diald beyond the optimum for crosslinking prolonged the in vitro enzymatic degradation time of the hydrogels. The swelling of the crosslinked GAG hydrogels was correlated with the amount of PEG‐diald used rather than with the crosslinking density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4344–4356, 2004  相似文献   

14.
A type of novel hybrid hydrogels from sodium humate (SH), polyacrylamide (PAM), and hydrophilic Laponite clay were prepared using potassium persulfate (KPS) as the initiator and N,N′-methylenebisacrylamide (MBA) as the cross-linker. The structures of the hydrogels were characterized by field emission scanning electron microscope and FTIR. Their swelling properties, swelling mechanism and rheological properties were also investigated. Experiments show that the composite is heterogeneous in the PAM/SH hydrogel system, while the clay collaborates with SH and improves the network structure of PAM/SH/clay hydrogel. High water-absorbing capability is shown for both hydrogel systems. Han plot proves that clay and SH are compatible with PAM for PAM/SH/clay hydrogels.  相似文献   

15.
New ternary semi interpenetrating polymer networks (semi‐IPNs) systems containing acrylamide (AAm), 1‐vinylimidazole (VI) and poly (ethylene glycol) (PEG) have been prepared. AAm/VI hydrogels and semi‐IPN's, poly (AAm/VI/PEG) with 0.25, 0.50, 0.75 and 1.00 g of PEG (per 1.00 g AAm) were prepared by free radical solution polymerization in aqueous solution of AAm with VI as comonomer and a multifunctional crosslinker such as 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of VI and PEG content in hydrogels were examined. AAm/VI and AAm/VI/PEG hydrogels showed large extents of swelling in aqueous media, the swelling being highly dependent on the chemical composition of the hydrogels. Percentage swelling ratio of AAm/VI hydrogels and AAm/VI/PEG hydrogels was shown as 650–4167%. The values of equilibrium water content (EWC) of the hydrogels are between 0.8990 and 0.9750. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
以聚乙二醇(PEG)、聚氧化丙烯二醇(PPG)、异弗尔酮二异氰酸酯(IPDI)为主要原料制备聚氨酯预聚体(PU),与丝素蛋白水溶液(SF)交联制得丝素蛋白-聚氨酯(SF-PU)复合水凝胶.分别利用ATR、SEM对水凝胶组成、结构及微观形貌进行表征;DSC、吸水溶胀测试探讨了丝素蛋白与聚氨酯的质量比(SF/PU)以及聚氨酯中不同软段质量比(PEG/PPG)对SF-PU水凝胶热性能、溶胀性能的影响.结果表明,SF-PU水凝胶具有多孔结构;样品中不同的SF/PU、PEG/PPG均对材料的玻璃化转变温度、结晶度及溶胀性能产生影响,且当水凝胶组分为SF/PU=1/25、PEG/PPG=2/1时,平衡溶胀比(ESR)可达到440%;水凝胶在溶胀初始阶段符合菲克扩散模型,整个溶胀过程遵循溶胀动力学2级方程.  相似文献   

17.
In this work,a monomer with double bond was introduced to the surface of clay nanosheets via inclusion complexation between cyclodextrin(CD)host and azobenzene(Azo)guest,as well as electrostatic interaction between clay nanoplatelets and cations of azobenzene derivatives.The obtained suprastructure acts as a supramolecular cross-linker in its copolymerization with macromonomer PEG resulting in a hybrid supramolecular hydrogel.Only viscous liquid was obtained in the absence of clay nanoplatelets,revealing the supramolecular cross-linker played an important role in the hydrogel formation.Such hybrid supramolecular hydrogel exhibited good stability and shear thinning property.  相似文献   

18.
Novel tough composite hydrogels were prepared from inorganic bentonite(IB), polyvinyl alcohol(PVA) and polyethylene glycol(PEG) by means of a freeze-thaw technique, during which IB acted as multifunctional physically crosslinking junction and a filler to bridge the 3D network hydrogel; while the physical adsorption between IB and the polymer chains served as sacrificial bonds and increased the energy dissipation efficiency. The effects of different content of IB(wIB) on the morphological, thermal, swelling, and mechanical properties of the hydrogels were investigated. It was found that the added IB promoted the material crosslinking and stability, and the mechanical properties of the hydrogels were significantly improved with increasing wIB. The highest tensile stress of the hydrogel was achieved(1.1 MPa) when wIBwas 5%. The synthesized hydrogels with high mechanical strength and low friction coefficient are potential candidate materials for artificial cartilage.  相似文献   

19.
Nanoparticles possessing poly(ethylene glycol) (PEG) chains on their surface have been described as blood persistent drug delivery system with potential applications for intravenous drug administration. Considering the importance of protein interactions with injected colloidal dug carriers with regard to their in vivo fate, we analysed plasma protein adsorption onto biodegradable PEG-coated poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(-caprolactone) (PCL) nanoparticles employing two-dimensional gel electrophoresis (2-D PAGE). A series of corona/core nanoparticles of sizes 160–270 nm were prepared from diblock PEG-PLA, PEG-PLGA and PEG-PCL and from PEG-PLA:PLA blends. The PEG Mw was varied from 2000–20 000 g/mole and the particles were prepared using different PEG contents. It was thus possible to study the influence of the PEG corona thickness and density, as well as the influence of the nature of the core (PLA, PLGA or PCL), on the competitive plasma protein adsorption, zeta potential and particle uptake by polymorphonuclear (PMN) cells. 2-D PAGE studies showed that plasma protein adsorption on PEG-coated PLA nanospheres strongly depends on the PEG molecular weight (Mw) (i.e. PEG chain length at the particle surface) as well as on the PEG content in the particles (i.e. PEG chain density at the surface of the particles). Whatever the thickness or the density of the corona, the qualitative composition of the plasma protein adsorption patterns was very similar, showing that adsorption was governed by interaction with a PLA surface protected more or less by PEG chains. The main spots on the gels were albumin, fibrinogen, IgG, Ig light chains, and the apolipoproteins apoA-I and apoE. For particles made of PEG-PLA45K with different PEG Mw, a maximal reduction in protein adsorption was found for a PEG Mw of 5000 g/mole. For nanospheres differing in their PEG content from 0.5 to 20 wt %, a PEG content between 2 and 5 wt % was determined as a threshold value for optimal protein resistance. When increasing the PEG content in the nanoparticles above 5 wt % no further reduction in protein adsorption was achieved. Phagocytosis by PMN studied using chemiluminescence and zeta potential data agreed well with these findings: the same PEG surface density threshold was found to ensure simultaneously efficient steric stabilization and to avoid the uptake by PMN cells. Supposing all the PEG chains migrate to the surface, this would correspond to a distance of about 1.5 nm between two terminally attached PEG chains in the covering ‘brush’. Particles from PEG5K-PLA45K, PEG5K-PLGA45K and PEG5K-PCL45K copolymers enabled to study the influence of the core on plasma protein adsorption, all other parameters (corona thickness and density) being kept constant. Adsorption patterns were in good qualitative agreement with each other. Only a few protein species were exclusively present just on one type of nanoparticle. However, the extent of proteins adsorbed differed in a large extent from one particle to another. In vivo studies could help elucidating the role of the type and amount of proteins adsorbed on the fate of the nanoparticles after intraveinous administration, as a function of the nature of their core. These results could be useful in the design of long circulating intravenously injectable biodegradable drug carriers endowed with protein resistant properties and low phagocytic uptake.  相似文献   

20.
The results of network parameters of poly(N‐isopropylacrylamide)/montmorillonite (PNIPAAm/MMT) hydrogels prepared with two different types and concentrations of accelerators (tetramethylethylenediamine, TEMED and quaternary TEMED containing decyl bromide, QTEMED) using three different clay contents (1.0, 3.0, and 5.0 wt% of total monomer concentration) at two different polymerization temperatures (10 and 32°C) were presented and discussed. It was observed that when the reaction temperature of PNIPAAm crosslinked with MMT was chosen as 10°C both volume swelling ratios (i.e., thermodynamic interaction) and shear moduli, G increased. In hydrogels, thermodynamic interaction is reflected by polymer–water interaction parameter (χ). The lower is the value of χ, the stronger is the interaction between polymer and water, and the lower is the interaction between hydrophobic groups or between polymer chains. In addition, increase in MMT content was slightly affected on these intermolecular interactions. Therefore, this effect that combines high‐shear modulus with lower value of χ in the same molecular structure was defined as clay content‐independent diffusion behavior. On the other hand, in the case of the hydrogels synthesized with the higher concentration of TEMED and MMT, the values of χ and G decreased. These facts were interpreted that increase in both accelerator concentration and clay content, for fixed NIPAAm concentration made the number of effective crosslinks between MMT layers smaller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号