首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Some results on integral sum graphs   总被引:1,自引:0,他引:1  
Wang Yan  Bolian Liu   《Discrete Mathematics》2001,240(1-3):219-229
Let Z denote the set of all integers. The integral sum graph of a finite subset S of Z is the graph (S,E) with vertex set S and edge set E such that for u,vS, uvE if and only if u+vS. A graph G is called an integral sum graph if it is isomorphic to the integral sum graph of some finite subset S of Z. The integral sum number of a given graph G, denoted by ζ(G), is the smallest number of isolated vertices which when added to G result in an integral sum graph. Let x denote the least integer not less than the real x. In this paper, we (i) determine the value of ζ(KnE(Kr)) for r2n/3−1, (ii) obtain a lower bound for ζ(KnE(Kr)) when 2r<2n/3−1 and n5, showing by construction that the bound is sharp when r=2, and (iii) determine the value of ζ(Kr,r) for r2. These results provide partial solutions to two problems posed by Harary (Discrete Math. 124 (1994) 101–108). Finally, we furnish a counterexample to a result on the sum number of Kr,s given by Hartsfiedl and Smyth (Graphs and Matrices, R. Rees (Ed.), Marcel, Dekker, New York, 1992, pp. 205–211).  相似文献   

2.
We consider the nonlinear parabolic equation ut = (k(u)ux)x + b(u)x, where u = u(x, t, x ε R1, t > 0; k(u) ≥ 0, b(u) ≥ 0 are continuous functions as u ≥ 0, b (0) = 0; k, b > 0 as u > 0. At t = 0 nonnegative, continuous and bounded initial value is prescribed. The boundary condition u(0, t) = Ψ(t) is supposed to be unbounded as t → +∞. In this paper, sufficient conditions for space localization of unbounded boundary perturbations are found. For instance, we show that nonlinear equation ut = (unux)x + (uβ)x, n ≥ 0, β >; n + 1, exhibits the phenomenon of “inner boundedness,” for arbitrary unbounded boundary perturbations.  相似文献   

3.
Let Xt = Σj=-∞ cjZt - j be a moving average process where {Zt} is iid with common distribution in the domain of attraction of a stable law with index , 0 < < 2. If 0 < < 2, E|Z1| < ∞ and the distribution of |Z1|and |Z1Z2| are tail equivalent then the sample correlation function of {X1} suitably normalized converges in distribution to the ratio of two dependent stable random variables with indices and /2. This is in sharp contrast to the case E|Z1| = ∞ where the limit distribution is that of the ratio of two independent stable variables. Proofs rely heavily on point process techniques. We also consider the case when the sample correlations are asymptotically normal and extend slightly the classical result.  相似文献   

4.
S. Zhang  L. Zhu   《Discrete Mathematics》2003,260(1-3):307-313
It has been shown by Lei, in his recent paper, that there exists a large set of Kirkman triple systems of order uv (LKTS(uv)) if there exist an LKTS(v), a TKTS(v) and an LR(u), where a TKTS(v) is a transitive Kirkman triple system of order v, and an LR(u) is a new kind of design introduced by Lei. In this paper, we improve this product construction by removing the condition “there exists a TKTS(v)”. Our main idea is to use transitive resolvable idempotent symmetric quasigroups instead of TKTS. As an application, we can combine the known results on LKTS and LR-designs to obtain the existence of an LKTS(3nm(2·13n1+1)(2·13nt+1)) for n1, m{1,5,11,17,25,35,43,67,91,123}{22r+125s+1 : r0,s0}, t0 and ni1 (i=1,…,t).  相似文献   

5.
We consider a variation of a classical Turán-type extremal problem (F. Chung, R. Graham, Erd s on Graphs: His Legacy of Unsolved Problems, AK Peters Ltd., Wellesley, 1998, Chapter 3) as follows: Determine the smallest even integer σ(Kr,s,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(Kr,s,n) is potentially Kr,s-graphic, where Kr,s is a r×s complete bipartite graph, i.e., π has a realization G containing Kr,s as its subgraph. In this paper, we first give sufficient conditions for a graphic sequence being potentially Kr,s-graphic, and then we determine σ(Kr,r,n) for r=3,4.  相似文献   

6.
We consider the following model Hr(n, p) of random r-uniform hypergraphs. The vertex set consists of two disjoint subsets V of size | V | = n and U of size | U | = (r − 1)n. Each r-subset of V × (r−1U) is chosen to be an edge of H ε Hr(n, p) with probability p = p(n), all choices being independent. It is shown that for every 0 < < 1 if P = (C ln n)/nr−1 with C = C() sufficiently large, then almost surely every subset V1 V of size | V1 | = (1 − )n is matchable, that is, there exists a matching M in H such that every vertex of V1 is contained in some edge of M.  相似文献   

7.
Let Dn,r denote the largest rth nearest neighbor link for n points drawn independently and uniformly from the unit d-cube Cd. We show that according as r < d or r>d, the limiting behavior of Dn,r, as n → ∞, is determined by the two-dimensional ‘faces’ respectively one-dimensional ‘edges’ of the boundary of Cd. If d = r, a ‘balance’ between faces and edges occurs. In case of a d-dimensional sphere (instead of a cube) the boundary dominates the asymptotic behavior of Dn,r if d 3 or if d = 2, r 3.  相似文献   

8.
Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers   总被引:6,自引:0,他引:6  
The Ramsey number r(H,Kn) is the smallest integer N so that each graph on N vertices that fails to contain H as a subgraph has independence number at least n. It is shown that r(K2,m,Kn)(m−1+o(1))(n/log n)2 and r(C2m,Kn)c(n/log n)m/(m−1) for m fixed and n→∞. Also r(K2,n,Kn)=Θ(n3/log2 n) and .  相似文献   

9.
Maximal IM-unextendable graphs   总被引:3,自引:0,他引:3  
Qin Wang  Jinjiang Yuan   《Discrete Mathematics》2001,240(1-3):295-298
A graph G is maximal IM-unextendable if G is not induced matching extendable and, for every two nonadjacent vertices x and y, G+xy is induced matching extendable. We show in this paper that a graph G is maximal IM-unextendable if and only if G is isomorphic to Mr(Ks(Kn1Kn2Knt)), where Mr is an induced matching of size r, r1, t=s+2, and each ni is odd.  相似文献   

10.
We study the problem of selecting one of the r best of n rankable individuals arriving in random order, in which selection must be made with a stopping rule based only on the relative ranks of the successive arrivals. For each r up to r=25, we give the limiting (as n→∞) optimal risk (probability of not selecting one of the r best) and the limiting optimal proportion of individuals to let go by before being willing to stop. (The complete limiting form of the optimal stopping rule is presented for each r up to r=10, and for r=15, 20 and 25.) We show that, for large n and r, the optical risk is approximately (1−t*)r, where t*≈0.2834 is obtained as the roof of a function which is the solution to a certain differential equation. The optimal stopping rule τr,n lets approximately t*n arrivals go by and then stops ‘almost immediately’, in the sense that τr,n/nt* in probability as n→∞, r→∞  相似文献   

11.
For the pth-order linear ARCH model,
, where 0 > 0, i 0, I = 1, 2, …, p, {t} is an i.i.d. normal white noise with Et = 0, Et2 = 1, and t is independent of {Xs, s < t}, Engle (1982) obtained the necessary and sufficient condition for the second-order stationarity, that is, 1 + 2 + ··· + p < 1. In this note, we assume that t has the probability density function p(t) which is positive and lower-semicontinuous over the real line, but not necessarily Gaussian, then the geometric ergodicity of the ARCH(p) process is proved under Et2 = 1. When t has only the first-order absolute moment, a sufficient condition for the geometric ergodicity is also given.  相似文献   

12.
An (r, n)-split coloring of a complete graph is an edge coloring with r colors under which the vertex set is partitionable into r parts so that for each i, part i does not contain Kn in color i. This generalizes the notion of split graphs which correspond to (2, 2)-split colorings. The smallest N for which the complete graph KN has a coloring which is not (r, n)-split is denoted by ƒr(n). Balanced (r,n)-colorings are defined as edge r-colorings of KN such that every subset of [N/r] vertices contains a monochromatic Kn in all colors. Then gr(n) is defined as the smallest N such that KN has a balanced (r, n)-coloring. The definitions imply that fr(n) gr(n). The paper gives estimates and exact values of these functions for various choices of parameters.  相似文献   

13.
In this paper, we provide a solution of the quadrature sum problem of R. Askey for a class of Freud weights. Let r> 0, b (− ∞, 2]. We establish a full quadrature sum estimate
1 p < ∞, for every polynomial P of degree at most n + rn1/3, where W2 is a Freud weight such as exp(−¦x¦), > 1, λjn are the Christoffel numbers, xjn are the zeros of the orthonormal polynomials for the weight W2, and C is independent of n and P. We also prove a generalisation, and that such an estimate is not possible for polynomials P of degree M = m(n) if m(n) = n + ξnn1/3, where ξn → ∞ as n → ∞. Previous estimates could sum only over those xjn with ¦xjn¦ σx1n, some fixed 0 < σ < 1.  相似文献   

14.
The parametric resource allocation problem asks to minimize the sum of separable single-variable convex functions containing a parameter λ, Σi = 1ni(xi + λgi(xi)), under simple constraints Σi = 1n xi = M, lixiui and xi: nonnegative integers for i = 1, 2, …, n, where M is a given positive integer, and li and ui are given lower and upper bounds on xi. This paper presents an efficient algorithm for computing the sequence of all optimal solutions when λ is continuously changed from 0 to ∞. The required time is O(GMlog2 n + n log n + n log(M/n)), where G = Σi = 1n ui − Σi = 1n li and an evaluation of ƒi(·) or gi(·) is assumed to be done in constant time.  相似文献   

15.
We discuss the covariance structure and long-memory properties of stationary solutions of the bilinear equation XttAt+Bt,(), where are standard i.i.d. r.v.'s, and At,Bt are moving averages in Xs, s<t. Stationary solution of () is obtained as an orthogonal Volterra expansion. In the case At≡1, Xt is the classical AR(∞) process, while Bt≡0 gives the LARCH model studied by Giraitis et al. (Ann. Appl. Probab. 10 (2000) 1002). In the general case, Xt may exhibit long memory both in conditional mean and in conditional variance, with arbitrary fractional parameters and , respectively. We also discuss the hyperbolic decay of auto- and/or cross-covariances of Xt and Xt2 and the asymptotic distribution of the corresponding partial sums’ processes.  相似文献   

16.
A q × n array with entries from 0, 1,…,q − 1 is said to form a difference matrix if the vector difference (modulo q) of each pair of columns consists of a permutation of [0, 1,… q − 1]; this definition is inverted from the more standard one to be found, e.g., in Colbourn and de Launey (1996). The following idea generalizes this notion: Given an appropriate δ (-[−1, 1]t, a λq × n array will be said to form a (t, q, λ, Δ) sign-balanced matrix if for each choice C1, C2,…, Ct of t columns and for each choice = (1,…,t) Δ of signs, the linear combination ∑j=1t jCj contains (mod q) each entry of [0, 1,…, q − 1] exactly λ times. We consider the following extremal problem in this paper: How large does the number k = k(n, t, q, λ, δ) of rows have to be so that for each choice of t columns and for each choice (1, …, t) of signs in δ, the linear combination ∑j=1t jCj contains each entry of [0, 1,…, q t- 1] at least λ times? We use probabilistic methods, in particular the Lovász local lemma and the Stein-Chen method of Poisson approximation to obtain general (logarithmic) upper bounds on the numbers k(n, t, q, λ, δ), and to provide Poisson approximations for the probability distribution of the number W of deficient sets of t columns, given a random array. It is proved, in addition, that arithmetic modulo q yields the smallest array - in a sense to be described.  相似文献   

17.
A mapping ƒ : n=1InI is called a bag mapping having the self-identity if for every (x1,…,xn) ε i=1In we have (1) ƒ(x1,…,xn) = ƒ(xi1,…,xin) for any arrangement (i1,…,in) of {1,…,n}; monotonic; (3) ƒ(x1,…,xn, ƒ(x1,…,xn)) = ƒ(x1,…,xn). Let {ωi,n : I = 1,…,n;n = 1,2,…} be a family of non-negative real numbers satisfying Σi=1nωi,n = 1 for every n. Then one calls the mapping ƒ : i=1InI defined as follows an OWA bag mapping: for every (x1,…,xn) ε i=1In, ƒ(x1,…,xn) = Σi=1nωi,nyi, where yi is the it largest element in the set {x1,…,xn}. In this paper, we give a sufficient and necessary condition for an OWA bag mapping having the self-identity.  相似文献   

18.
An in-tournament is an oriented graph such that the negative neighborhood of every vertex induces a tournament. In this paper, pancyclic orderings of a strong in-tournament D are investigated. This is a labeling, say x1,x2,…,xn, of the vertex set of D such that D[{x1,x2,…,xt}] is Hamiltonian for t=3,4,…,n. Moreover, we consider the related problem on weak pancyclic orderings, where the same holds for t4 and x1 belongs to an arbitrary oriented 3-cycle. We present sharp lower bounds for the minimum indegree ensuring the existence of a pancyclic or a weak pancyclic ordering in strong in-tournaments.  相似文献   

19.
In a circular permutation diagram, there are two sets of terminals on two concentric circles: Cin and Cout. Given a permutation Π = [π1, π2, …, πn], terminal i on Cin and terminal πi on Cout are connected by a wire. The intersection graph Gc of a circular permutation diagram Dc is called a circular permutation graph of a permutation Π corresponding to the diagram Dc. The set of all circular permutation graphs of a permutation Π is called the circular permutation graph family of permutation Π. In this paper, we propose the following: (1) an O(V + E) time algorithm to check if a labeled graph G = (V, E) is a labeled circular permutation graph. (2) An O(n log n + nt) time algorithm to find a maximum independent set of a family, where n = Π and t is the cardinality of the output. (Number t in the worst case is O(n). However, if Π is uniformly distributed (and independent from i), its expected value is O(√n).) (3) An O(min(δVclog logVc,VclogVc) + Ec) time algorithm for finding a maximum independent set of a circular permutation diagram Dc, where δ is the minimum degree of vertices in the intersection graph Gc = (Vc,Ec) of Dc. (4) An O(n log log n) time algorithm for finding a maximum clique and the chromatic number of a circular permutation diagram, where n is the number of wires in the diagram.  相似文献   

20.
Xuding Zhu 《Discrete Mathematics》1998,190(1-3):215-222
Suppose G is a graph. The chromatic Ramsey number rc(G) of G is the least integer m such that there exists a graph F of chromatic number m for which the following is true: for any 2-colouring of the edges of F there is a monochromatic subgraph isomorphic to G. Let Mn = min[rc(G): χ(G) = n]. It was conjectured by Burr et al. (1976) that Mn = (n − 1)2 + 1. This conjecture has been confirmed previously for n 4. In this paper, we shall prove that the conjecture is true for n = 5. We shall also improve the upper bounds for M6 and M7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号