首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P-glycoprotein (P-gp) is a plasma membrane efflux transporter belonging to ATP-binding cassette superfamily, responsible for multidrug resistance in tumor cells. Over-expression of P-gp in cancer cells limits the efficacy of many anticancer drugs. A clear understanding of P-gp substrate binding will be advantageous in early drug discovery process. However, substrate poly-specificity of P-gp is a limiting factor in rational drug design. In this investigation, we report a dynamic trans-membrane model of P-gp that accurately identified the substrate binding residues of known anticancer agents. The study included homology modeling of human P-gp based on the crystal structure of C. elegans P-gp, molecular docking, molecular dynamics analyses and binding free energy calculations. The model was further utilized to speculate substrate propensity of in-house anticancer compounds. The model demonstrated promising results with one anticancer compound (NSC745689). As per our observations, the molecule could be a potential lead for anticancer agents devoid of P-gp mediated multiple drug resistance. The in silico results were further validated experimentally using Caco-2 cell lines studies, where NSC745689 exhibited poor permeability (P app 1.03 ± 0.16 × 10?6 cm/s) and low efflux ratio of 0.26.  相似文献   

2.
Polyalthia belong to the Annonaceae family and are a type of evergreen tree distributed across many tropical and subtropical regions. Polyalthia species have been used long term as indigenous medicine to treat certain diseases, including fever, diabetes, infection, digestive disease, etc. Recent studies have demonstrated that not only crude extracts but also the isolated pure compounds exhibit various pharmacological activities, such as anti-oxidant, anti-microbial, anti-tumor, anti-cancer, etc. It is known that the initiation of cancer usually takes several years and is related to unhealthy lifestyle, as well as dietary and environmental factors, such as stress, toxins and smoking. In fact, natural or synthetic substances have been used as cancer chemoprevention to delay, impede, or even stop cancer growing. This review is an attempt to collect current available phytochemicals from Polyalthia species, which exhibit anti-cancer potentials for chemoprevention purposes, providing directions for further research on the interesting agents and possible clinical applications.  相似文献   

3.
4.
One of the major impediments to the successful treatment of cancer is the development of resistant cancer cells, which could cause multidrug resistance (MDR), and overexpression of ABCB1/P-glycoprotein (P-gp) is one of the most common causes of MDR in cancer cells. Recently, natural products or plant-derived chemicals have been investigated more and more widely as potential multidrug-resistant (MDR) reversing agents. The current study demonstrated for the first time that non-alkaloids extract from Stemona sessilifolia significantly reversed the resistance of chemotherapeutic agents, adriamycin, paclitaxel and vincristine to MCF-7/ADR cells compared with MCF-7/S cells in a dose-dependent manner. The results obtained from these studies indicated that the non-alkaloids extract from S. sessilifolia plays an important role in reversing MDR of cancer as a P-gp modulator in vitro and may be effective in the treatment of multidrug-resistant cancers.  相似文献   

5.
多芳基取代咪唑的合成及其逆转多药耐药性研究   总被引:3,自引:0,他引:3  
合成了一系列新的多芳基取代咪唑类化合物,其结构经元素分析、IR、1HNMR和MS等确定,并采用MTT法测定了它们对由P-糖蛋白(P-gp)介导的肿瘤多药耐药性(MDR)的逆转效果.结果表明,化合物和具有很好的体外逆转MDR活性  相似文献   

6.
Despite the development of targeted therapies in cancer, the problem of multidrug resistance (MDR) is still unsolved. Most patients with metastatic cancer die from MDR. Transmembrane efflux pumps as the main cause of MDR have been addressed by developed inhibitors, but early inhibitors of the most prominent and longest known efflux pump P-glycoprotein (P-gp) were disappointing. Those inhibitors have been used without knowledge about the expression of P-gp by the treated tumor. Therefore the use of inhibitors of transmembrane efflux pumps in clinical settings is reconsidered as a promising strategy in the case of the respective efflux pump expression. We discovered novel symmetric inhibitors of the symmetric efflux pump MRP4 encoded by the ABCC4 gene. MRP4 is involved in many kinds of cancer with resistance to anticancer drugs. All compounds showed better activities than the best known MRP4 inhibitor MK571 in an MRP4-overexpressing cell line assay, and the activities could be related to the various substitution patterns of aromatic residues within the symmetric molecular framework. One of the best compounds was demonstrated to overcome the MRP4-mediated resistance in the cell line model to restore the anticancer drug sensitivity as a proof of concept.  相似文献   

7.
8.
Breast cancer is a complex and multi-drug resistant (MDR) disease, which could result in the failure of many chemotherapeutic clinical agents. Discovering effective molecules from natural products or by derivatization from known compounds is the interest of many research studies. The first objective of the present study is to investigate the cytotoxic combinatorial, chemosensitizing, and apoptotic effects of an isatin derived compound (5,5-diphenylimidazolidine-2,4-dione conjugated with 5-substituted isatin, named HAA2021 in the present study) against breast cancer cells (MCF7) and breast cancer cells resistant to doxorubicin (MCF7/ADR) when combined with doxorubicin. The second objective is to investigate the binding mode of HAA2021 withP-glycoprotein (P-gp) and heat shock protein 90 (Hsp90), and to determine whether their co-inhibition by HAA2021 contribute to the increase of the chemosensitization of MCF7/ADR cells to doxorubicin. The combination of HAA2021, at non-toxic doses, with doxorubicin synergistically inhibited the proliferation while inducing significant apoptosis in MCF7 cells. Moreover, HAA2021 increased the chemosensitization of MCF7/ADR cells to doxorubicin, resulting in increased cytotoxicity/selectivity and apoptosis-inducing efficiency compared with the effect of doxorubicin or HAA2021 alone against MCF7/ADR cells. Molecular modeling showed that two molecules of HAA2021 bind to P-gp at the same time, causing P-gp inhibitory effect of the MDR efflux pump, and accumulation of Rhodamine-123 (Rho123) in MCF7/ADR cells. Furthermore, HAA2021 stably interacted with Hsp90α more efficiently compared with 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), which was confirmed with the surface plasmon resonance (SPR) and molecular modeling studies. Additionally, HAA2021 showed multi-target effects via the inhibition of Hsp90 and nuclear factor kappa B (NF-𝜅B) proteins in MCF7 and MCF7/ADR cells. Results of real time-PCR also confirmed the synergistic co-inhibition of P-gp/Hsp90α genes in MCF7/ADR cells. Further pharmacokinetic and in vivo studies are warranted for HAA2021 to confirm its anticancer capabilities.  相似文献   

9.
The fundamental cause of human cancer is strongly influenced by down- or up-regulations of epigenetic factors. Upregulated histone deacetylases (HDAC) have been shown to be effectively neutralized by the action of HDACs inhibitors (HDACi). However, cytotoxicity has been reported in normal cells because of non-specificity of several available HDACis that are in clinical use or at different phases of clinical trials. Because of the high amino acid sequence and structural similarity among HDAC enzymes, it is believed to be a challenging task to obtain isoform-selectivity. The essential aim of the present research work was to identify isoform-selective inhibitors against class IIa HDACs via structure-based drug design. Based on the highest binding affinity and isoform-selectivity, the top-ranked inhibitors were in silico tested for their absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, which were classified as drug-like compounds. Later, molecular dynamics simulation (MD) was carried out for all compound-protein complexes to evaluate the structural stability and the biding mode of the inhibitors, which showed high stability throughout the 100 ns simulation. Free binding energy predictions by MM-PBSA method showed the high binding affinity of the identified compounds toward their respective targets. Hence, these inhibitors could be used as drug candidates or as lead compounds for more in silico or in vitro optimization to design safe isoform-selective HDACs inhibitors.  相似文献   

10.
多药耐药性问题是导致第一代紫杉烷药物在临床化疗失败的主要原因。本文对紫杉醇C7、C10、C14、C3′多个位点的取代基进行改造,针对合成的6个新型的紫杉烷化合物,在体外考察其对多药耐药肿瘤细胞株以及人结肠癌HCT-116干细胞的增殖抑制活性,实验结果表明6个化合物的抗多药耐药活性均优于紫杉醇。采用P-gp高表达的犬肾细胞MDCK-MDR1进一步研究高活性候选化合物JT-3与P-gp的相互作用。以此研发抗多药耐药型的新一代紫杉烷类药物,对开发扩大抗癌新适应症的新一代紫杉烷类抗癌药意义重大。  相似文献   

11.
细胞膜P-糖蛋白(P-gp)介导的药物外流是肿瘤多药耐药(MDR)产生的重要机制,异黄酮类化合物可以通过抑制P-gp活性发挥MDR逆转作用.通过对P-gp抑制剂进行结构分析,以金雀异黄素为母体,在其7位、8位及4'位分别引进碱性边链,设计、合成了20个金雀异黄素衍生物(其中16个未见文献报道),并检测了其多药耐药逆转活性.结果表明,大多数目标化合物对人白血病耐药细胞株K562/A02具有不同程度的耐药逆转作用.其中目标化合物8a,8b,8d,8e逆转作用较强,逆转倍数分别为8.97,6.36,5.19和5.82.  相似文献   

12.
To develop new therapeutic molecules, it is essential to understand the biological effects and targets of clinically relevant compounds. In this article, we describe the extraction and characterization of two alkaloids from the roots of Isolona hexaloba—curine and guattegaumerine. The effect of these alkaloids on the multidrug efflux pump ABCB1 (MDR1/P-Glycoprotein) and their antiproliferative properties were studied. Compared to verapamil, a widely used inhibitor of P-gp, curine and guattegaumerine were found to be weak inhibitors of MDR1/P-Glycoprotein. The highest inhibition of efflux produced by verapamil disappeared in the presence of curine or guattegaumerine as competitors, and the most pronounced effect was achieved with curine. Altogether, this work has provided new insights into the biological effects of these alkaloids on the rat Mdr1b P-gp efflux mechanism and would be beneficial in the design of potent P-gp inhibitors.  相似文献   

13.
14.
Summary P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, functions as a biological barrier by extruding cytotoxic agents out of cells, resulting in an obstacle in chemotherapeutic treatment of cancer. In order to aid in the development of potential P-gp inhibitors, we constructed a quantitative structure–activity relationship (QSAR) model of flavonoids as P-gp inhibitors based on Bayesian-regularized neural network (BRNN). A dataset of 57 flavonoids collected from a literature binding to the C-terminal nucleotide-binding domain of mouse P-gp was compiled. The predictive ability of the model was assessed using a test set that was independent of the training set, which showed a standard error of prediction of 0.146 ± 0.006 (data scaled from 0 to 1). Meanwhile, two other mathematical tools, back-propagation neural network (BPNN) and partial least squares (PLS) were also attempted to build QSAR models. The BRNN provided slightly better results for the test set compared to BPNN, but the difference was not significant according to F-statistic at p = 0.05. The PLS failed to build a reliable model in the present study. Our study indicates that the BRNN-based in silico model has good potential in facilitating the prediction of P-gp flavonoid inhibitors and might be applied in further drug design.  相似文献   

15.
Radiotherapy, frequently used for treatment of solid tumors, carries two main obstacles including acquired radioresistance in cancer cells during radiotherapy and normal tissue injury. Phenylpropanoids, which are naturally occurring phytochemicals found in plants, have been identified as potential radiotherapeutic agents due to their anti-cancer activity and relatively safe levels of cytotoxicity. Various studies have proposed that these compounds could not only sensitize cancer cells to radiation resulting in inhibition of growth and cell death but also protect normal cells against radiation-induced damage. This review is intended to provide an overview of recent investigations on the usage of phenylpropanoids in combination with radiotherapy in cancer treatment.  相似文献   

16.
Homeostatic trafficking of immune cells by CC chemokine receptor 7 (CCR7) keeps immune responses and tolerance in a balance. The involvement of this protein in lymph node metastasis in cancer marks CCR7 as a penitential drug target. Using the crystal structure of CCR7, herein, a comprehensive virtual screening study is presented to filter novel strong CCR7 binding phytochemicals from Saudi medicinal plants that have a higher binding affinity for the intracellular allosteric binding pocket. By doing so, three small natural molecules named as Hit-1 (1,8,10-trihydroxy-3-methoxy-6-methylanthracen-9(4H)-one), Hit-2 (4-(3,4-dimethoxybenzyl)-3-(4-hydroxy-3-methoxybenzyl)dihydrofuran-2(3H)-one), and Hit-3 (10-methyl-12,13-dihydro-[1,2]dioxolo[3,4,5-de]furo[3,2-g]isochromeno[4,3-b]chromen-8-ol) are predicted showing strong binding potential for the CC chemokine receptor 7 allosteric pocket. During molecular dynamics simulations, the compounds were observed in the formation of several chemical bonding of short bond distances. Additionally, the molecules remained in strong contact with the active pocket residues and experienced small conformation changes that seemed to be mediated by the CCR7 loops to properly engage the ligands. Two types of binding energy methods (MM/GBPBSA and WaterSwap) were additionally applied to further validate docking and simulation findings. Both analyses complement the good affinity of compounds for CCR7, the electrostatic and van der Waals energies being the most dominant in intermolecular interactions. The active pocket residue’s role in compounds binding was further evaluated via alanine scanning, which highlighted their importance in natural compounds binding. Additionally, the compounds fulfilled all drug-like rules: Lipinski, Ghose, Veber, Egan, and Muegge passed many safety parameters, making them excellent anti-cancer candidates for experimental testing.  相似文献   

17.
Numerous natural products exhibit antiproliferative activity against cancer cells by modulating various biological pathways. In this study, we investigated the potential use of eight natural compounds (apigenin, curcumin, epigallocatechin gallate, fisetin, forskolin, procyanidin B2, resveratrol, urolithin A) and two repurposed agents (fulvestrant and metformin) as chemotherapy enhancers and mesenchymal-to-epithelial (MET) inducers of cancer cells. Screening of these compounds in various colon, breast, and pancreatic cancer cell lines revealed anti-cancer activity for all compounds, with curcumin being the most effective among these in all cell lines. Although some of the natural products were able to induce MET in some cancer cell lines, the MET induction was not related to increased synergy with either 5-FU, irinotecan, gemcitabine, or gefitinib. When synergy was observed, for example with curcumin and irinotecan, this was unrelated to MET induction, as assessed by changes in E-cadherin and vimentin expression. Our results show that MET induction is compound and cell line specific, and that MET is not necessarily related to enhanced chemosensitivity.  相似文献   

18.
Eradication of HIV reservoirs in the brain necessitates penetration of antiviral agents across the blood-brain barrier (BBB), a process limited by drug efflux proteins such as P-glycoprotein (P-gp) at the membrane of brain capillary endothelial cells. We present an innovative chemical strategy toward the goal of therapeutic brain penetration of the P-gp substrate and antiviral agent abacavir, in conjunction with a traceless tether. Dimeric prodrugs of abacavir were designed to have two functions: inhibit P-gp efflux at the BBB and revert to monomeric therapeutic within cellular reducing environments. The prodrug dimers are potent P-gp inhibitors in cell culture and in a brain capillary model of the BBB. Significantly, these agents demonstrate anti-HIV activity in two T-cell-based HIV assays, a result that is linked to cellular reversion of the prodrug to abacavir. This strategy represents a platform technology that may be applied to other therapies with limited brain penetration due to P-glycoprotein.  相似文献   

19.
20.
Nowadays, about 150 natural products comprising an allenic or cumulenic structure are known. The chemistry of these compounds has turned out to be a very attractive and prolific area of interest: advances in the isolation and characterization of new allenic natural products have led to the establishment of efficient synthetic procedures which in many cases also open up an access to enantiomerically pure target molecules. Inspired by the intriguing biological activities of many allenic natural products, allene moieties are now systematically introduced in pharmacologically active classes of compounds (steroids, prostaglandins, amino acids, nucleosides). The functionalized allenes thus obtained often exhibit impressive activities as mechanism-based enzyme inhibitors, cytotoxic, or antiviral agents. A prerequisite for further developments in this field is the efficient stereoselective synthesis of allene derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号