首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form
$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$
Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).
  相似文献   

2.
The purpose of this article is to extend to \(\mathbb {R}^{n}\) known results in dimension 2 concerning the structure of a Hilbert space with reproducing kernel of the space of Herglotz wave functions. These functions are the solutions of Helmholtz equation in \(\mathbb {R} ^{n}\) that are the Fourier transform of measures supported in the unit sphere with density in \(L^{2}(\mathbb {S}^{n-1})\). As a natural extension of this, we define Banach spaces of solutions of the Helmholtz equation in \(\mathbb {R}^{n}\) belonging to weighted Sobolev type spaces \(\mathcal {H}^{p}\) having in a non local norm that involves radial derivatives and spherical gradients. We calculate the reproducing kernel of the Herglotz wave functions and study in \(\mathcal {H}^{p}\) and in mixed norm spaces, the continuity of the orthogonal projection \(\mathcal {P}\) of \(\mathcal {H}^{2}\) onto the Herglotz wave functions.  相似文献   

3.
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausdorff. We show that there exist isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\), \(n \ge 3\), which are orbit-equivalent on the complement of an n-dimensional degenerate subspace \(\mathbb {W}^n\) of \(\mathbb {L}^{n+1}\) and not orbit-equivalent on \(\mathbb {W}^n\). We classify isometric cohomogeneity one actions on \(\mathbb {L}^2\) and \(\mathbb {L}^3\) up to orbit-equivalence.  相似文献   

4.
Using limiting interpolation techniques we study the relationship between Besov spaces \(\mathbf B ^{0,-1/q}_{p,q}\) with zero classical smoothness and logarithmic smoothness \(-1/q\) defined by means of differences with similar spaces \(B^{0,b,d}_{p,q}\) defined by means of the Fourier transform. Among other things, we prove that \(\mathbf B ^{0,-1/2}_{2,2}=B^{0,0,1/2}_{2,2}\). We also derive several results on periodic spaces \(\mathbf B ^{0,-1/q}_{p,q}(\mathbb {T})\), including embeddings in generalized Lorentz–Zygmund spaces and the distribution of Fourier coefficients of functions of \(\mathbf B ^{0,-1/q}_{p,q}(\mathbb {T})\).  相似文献   

5.
We study the following problem: To what extend is a surface in the Euclidean space \(\mathbb{R}^{4}\) determined by the third fundamental form? We prove the existence of families of surfaces in \(\mathbb{R}^{4}\) which allow isometric deformations with isometric but not congruent Gaussian images. In particular, we provide a method which gives locally all surfaces in \(\mathbb{ R}^{4}\) with conformal Gauss map that allow such deformations. As a consequence, we have a way for constructing non-spherical pseudoumbilical surfaces in \(\mathbb{R}^{4}.\)  相似文献   

6.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

7.
The mountain pass theorem for scalar functionals is a fundamental result of the minimax methods in variational analysis. In this work we extend this theorem to the class of \(\mathcal{C}^{1}\) functions \(f:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}\), where the image space is ordered by the nonnegative orthant \(\mathbb{R}_{+}^{m}\). Under suitable geometrical assumptions, we prove the existence of a critical point of f and we localize this point as a solution of a minimax problem. We remark that the considered minimax problem consists of an inner vector maximization problem and of an outer set-valued minimization problem. To deal with the outer set-valued problem we use an ordering relation among subsets of \(\mathbb{R}^{m}\) introduced by Kuroiwa. In order to prove our result, we develop an Ekeland-type principle for set-valued maps and we extensively use the notion of vector pseudogradient.  相似文献   

8.
We show that several theorems about Polish spaces, which depend on the axiom of choice (\(\mathcal {AC}\)), have interesting corollaries that are theorems of the theory \(\mathcal {ZF} + \mathcal {DC}\), where \(\mathcal {DC}\) is the axiom of dependent choices. Surprisingly it is natural to use the full \(\mathcal {AC}\) to prove the existence of these proofs; in fact we do not even know the proofs in \(\mathcal {ZF} + \mathcal {DC}\). Let \(\mathcal {AD}\) denote the axiom of determinacy. We show also, in the theory \(\mathcal {ZF} + \mathcal {AD} + V = L(\mathbb {R})\), a theorem which strenghtens and generalizes the theorem of Drinfeld (Funct Anal Appl 18:245–246, 1985) and Margulis (Monatshefte Math 90:233–235, 1980) about the unicity of Lebesgue’s measure. This generalization is false in \(\mathcal {ZFC}\), but assuming the existence of large enough cardinals it is true in the model \(\langle L(\mathbb {R}),\in \rangle \).  相似文献   

9.
Let \(\mathbb {H}^{n}=\mathbb {C}^{n}\times \mathbb {R}\) be the n-dimensional Heisenberg group, \(Q=2n+2\) be the homogeneous dimension of \(\mathbb {H}^{n}\). We extend the well-known concentration-compactness principle on finite domains in the Euclidean spaces of Lions (Rev Mat Iberoam 1:145–201, 1985) to the setting of the Heisenberg group \(\mathbb {H}^{n}\). Furthermore, we also obtain the corresponding concentration-compactness principle for the Sobolev space \({ HW}^{1,Q}(\mathbb {H}^{n}) \) on the entire Heisenberg group \(\mathbb {H}^{n}\). Our results improve the sharp Trudinger–Moser inequality on domains of finite measure in \(\mathbb {H}^{n}\) by Cohn and Lu (Indiana Univ Math J 50(4):1567–1591, 2001) and the corresponding one on the whole space \(\mathbb {H}^n\) by Lam and Lu (Adv Math 231:3259–3287, 2012). All the proofs of the concentration-compactness principles for the Trudinger–Moser inequalities in the literature even in the Euclidean spaces use the rearrangement argument and the Polyá–Szegö inequality. Due to the absence of the Polyá–Szegö inequality on the Heisenberg group, we will develop a different argument. Our approach is surprisingly simple and general and can be easily applied to other settings where symmetrization argument does not work. As an application of the concentration-compactness principle, we establish the existence of ground state solutions for a class of Q- Laplacian subelliptic equations on \(\mathbb {H}^{n}\):
$$\begin{aligned} -\mathrm {div}\left( \left| \nabla _{\mathbb {H}}u\right| ^{Q-2} \nabla _{\mathbb {H}}u\right) +V(\xi ) \left| u\right| ^{Q-2}u=\frac{f(u) }{\rho (\xi )^{\beta }} \end{aligned}$$
with nonlinear terms f of maximal exponential growth \(\exp (\alpha t^{\frac{Q}{Q-1}})\) as \(t\rightarrow +\infty \). All the results proved in this paper hold on stratified groups with the same proofs. Our method in this paper also provide a new proof of the classical concentration-compactness principle for Trudinger-Moser inequalities in the Euclidean spaces without using the symmetrization argument.
  相似文献   

10.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

11.
This article studies a variation of the standard compressive sensing problem, in which sparse vectors \(\mathbf{x}\in\mathbb{R}^{N}\) are acquired through inaccurate saturated measurements \(\mathbf{y}= \mathcal{S}(\mathbf {A}\mathbf{x}+ \mathbf{e}) \in\mathbb{R}^{m}\), \(m \ll N\). The saturation function \(\mathcal{S}\) acts componentwise by sending entries that are large in absolute value to plus-or-minus a threshold while keeping the other entries unchanged. The present study focuses on the effect of the presaturation error \(\mathbf{e}\in\mathbb{R}^{m}\). The existing theory for accurate saturated measurements, i.e., the case \(\mathbf{e}= \mathbf{0}\), which exhibits two regimes depending on the magnitude of \(\mathbf{x}\in\mathbb {R}^{N}\), is extended here. A recovery procedure based on convex optimization is proposed and shown to be robust to presaturation error in both regimes. Another procedure ignoring the presaturation error is also analyzed and shown to be robust in the small magnitude regime.  相似文献   

12.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

13.
For a singular Riemannian foliation \(\mathcal {F}\) on a Riemannian manifold M, a curve is called horizontal if it meets the leaves of \(\mathcal {F}\) perpendicularly. For a singular Riemannian foliation \(\mathcal {F}\) on a unit sphere \(\mathbb {S}^{n}\), we show that if \(\mathcal {F}\) satisfies some properties, then the horizontal diameter of \(\mathbb {S}^{n}\) is \(\pi \), i.e., any two points in \(\mathbb {S}^{n}\) can be connected by a horizontal curve of length \(\le \pi \).  相似文献   

14.
We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)
  相似文献   

15.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

16.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

17.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

18.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

19.
In this paper, we study complete oriented f -minimal hypersurfaces properly immersed in a cylinder shrinking soliton \((\mathbb{S}^n \times \mathbb{R},\bar g,f)\).We prove that such hypersurface with L f -index one must be either \(\mathbb{S}^n \times \{ 0\}\) or \(\mathbb{S}^{n - 1} \times \mathbb{R}\), where \({S}^{n - 1}\) denotes the sphere in \(\mathbb{S}^n\) of the same radius. Also we prove a pinching theorem for them.  相似文献   

20.
This paper concerns with the heat equation in the half-space \(\mathbb {R}_{+}^{n}\) with nonlinearity and singular potential on the boundary \(\partial \mathbb {R}_{+}^{n}\). We show a well-posedness result that allows us to consider critical potentials with infinite many singularities and anisotropy. Motivated by potential profiles of interest, the analysis is performed in weak L p -spaces in which we prove linear estimates for some boundary operators arising from the Duhamel integral formulation in \(\mathbb {R}_{+}^{n}\). Moreover, we investigate qualitative properties of solutions like self-similarity, positivity and symmetry around the axis \(\overrightarrow {Ox_{n}}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号