首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and conformational dynamics of nonrigid cyclopropanecarbaldehyde (CPCA) molecule in the ground (Sb0) and lowest excited triplet (Tb1) and singlet (Sb1) electronic states were calculated using the MP2, DFT, CASSCF, CASPT2, and CCSD quantum chemical methods. According to ab initio calculations, in the Sb0 electronic state there are two symmetrical (cis and trans) conformers of the CPCA molecule. Excitation of the CPCA molecule to the ?1 and S1 electronic states causes significant structural changes: carbonyl CCHO fragment becomes nonplanar, cyclopropane fragment rotates around the C–C bond, thus changing the relative positions of the formyl and cyclopropane fragments. Using sections of the potential energy surfaces (PES) of the CPCA molecule in the Tb1 and Sb1 states, we calculated the torsion and inversion wave functions and vibrational transition energies. The results obtained suggest a strong coupling of the torsion and inversion motions in the Tb1 and Sb1 excited states.  相似文献   

2.
The internal rotation potential function of the acryloyl chloride molecule in the S 0 and S 1 electronic states was reproduced using systems of torsional vibration levels obtained for its trans and cis isomers by analyzing the vibrational structure of the UV spectrum of the molecule. The kinematic factor F in the S 0 ground state was calculated including geometric parameter relaxation as a function of internal rotation angle. The torsional potential parameters in the S 0 state obtained in this work were substantially different from those determined from the infrared Fourier-transform spectrum ignoring the resonance perturbation of the level with v = 3. The form of the internal rotation potential function and the higher stability of the trans isomer (the main isomer) were substantiated by high-level quantum-mechanical calculations.  相似文献   

3.
 We have investigated the S0 and S1 electronic states in bacteriorhodopsin using a variety of QM/MM levels. The decomposition of the calculated excitation energies into electronic and electrostatic components shows that the interaction of the chromophore with the protein electric field increases the excitation energy, while polarization effects are negligible. Therefore, the experimentally observed reduction in excitation energy from solution phase to protein environment (the Opsin shift) does not come from the electrostatic interaction with the protein environment, but from either the interaction ofthe chromophore with the solvent or counter ion, or structural effects. Our high-level ONIOM(TD– B3LYP:Amber) calculation predicts the excitation energy within 8 kcal/mol from experiment, the discrepancy probably being caused by the neglect of polarization of the protein environment. In addition, we have shown that the level of optimization is extremely critical for the calculation of accurate excitation energies in bacteriorhodopsin. Received: 13 October 2001 / Accepted: 6 September 2002 / Published online: 3 February 2003 Contribution to the Proceedings of the Symposium on Combined QM/MM Methods at the 222nd National Meeting of the American Chemical Society, 2001 Correspondence to: K. Morokuma e-mail: morokuma@emory.edu  相似文献   

4.
5.
Together with recent improved potential-energy surface calculations for the ground (X) and first excited (Ã) electronic states of HeH2 +, the electric dipole moment surfaces for each state and the transition dipole moments connecting the two states were evaluated for the entire range of the energy calculations. Using these functions the linestrengths of all dipole-allowed transitions between the bound vibrational levels within each of the two states (XX) and (ÃÃ) as well as between them (ÃX) are evaluated here. These data are believed to be useful both in the experimental search for the yet unobserved molecular spectra of HeH2 + and in evaluating theoretical rates for the radiative association or photodissociation processes involving the two lowest electronic states of the ion.Contribution to the Björn Roos Honorary Issue  相似文献   

6.
7.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

8.
9.
The possibility of synthesizing complex sulfide phases in the BaSm2S4-Tm2S3 system has been studied. Tm2S3 solid solutions were obtained with BaSm2S4 (CaFe2O4 structural type). The samples were identified by X-ray diffraction analysis and electron microscopy. The range of the solid solutions was determined. The total conductance was studied, and the conductance activation energy was calculated for samples with different dopant contents. The electrolytic properties of basic ternary sulfide and complex sulfide phases in the BaSm2S4-x mol % Tm2S3 system were investigated. A possible mechanism of defect formation was proposed.  相似文献   

10.
11.
Crystal structures of (NH4)3ZrF7 (I) and (NH4)3NbOF6 (II) are refined by X-ray diffraction at room temperature. The compounds are isostructural and belong to the structural type of elpasolite: space group F23; a(I) = 9.4185(3) Å, a(II) = 9.3371(5) Å; V(I) = 835.50(5) Å3, V(II) = 814.02(8) Å3; Z = 4; R(I) = 0.0145, and R(II) = 0.0138. The refinement of the structures in the space group Fm3m yields abnormally short X-X distances in the pentagonal bipyramid MX7 (X = F, O). The oxygen atom in II is identified by Nb-X distances and occupies one of the axial vertices of the bipyramid. The Nb atom in II is statistically distributed over the position 24f, while Zr in I resides in the symmetry center. The pentagonal bipyramid MX7 has six independent orientations in I and twelve in II. One of three crystallographically independent ammonium groups of the structures is disordered over six or twelve equivalent orientations.  相似文献   

12.
13.
The crystal structure of As-schwatzite Cu6(Cu5.26Hg0.75)(As2.83Sb1.17)S13 (Aktash deposit, Altai mountains) is refined. Tetrahedrally shaped dark-gray single crystals of the mineral belong to the cubic crystal system: I4¯3m space group, a = 10.2890(1) Å, V = 1089.2(1) Å3, d = 4.99 g/cm3, Z = 2 for the composition Cu11.26Hg0.75As2.83Sb1.17S13, R = 0.0177. The structure is based on the sphalerite-like framework comprising identically oriented (Cu,Hg)S4 tetrahedra ((Cu,Hg)-S 2.3452(8) Å) and (As,Sb)S3 pyramids ((As,Sb)-S 2.311(1) Å) sharing their vertices. The centers of [Cu6] octahedra in the (000) and (1/2 1/2 1/2) positions coinciding with the centers of the “cluster” anionic vacancies [□]4 are occupied by the so-called “thirteenth” sulfur atom. Quantum chemical calculations of the electron density are carried out for the [As4S13Cu6]6 fragment. The calculation results confirm the presence of strain in the [As4S13Cu6]6 moiety, which exists due to the support of the surrounding symmetric framework including the external sulfur atoms of the fragment. The possibility of inclusion of mercury into the framework, which is much richer in arsenic than in antimony, is demonstrated. High stability of the framework determines significant compression of the S-centered [SCu6] octahedron in its interstices, bringing together copper atoms to 3.145(1) Å and shortening the Cu-S distances to 2.224(1) Å  相似文献   

14.
The crystal structure of bis(semicarbazido)copper(II) nitrate [Cu(NH2NHC(O)NH2)2](NO3)2 has been studied by X-ray diffraction. Monoclinic crystals, a = 6.835(2) Å, b = 7.733(2) Å, c = 10.320(3) Å, β = 105.701(3)°, V = 525.1(2) Å3, space group P21/c, Z = 2, d msd = 2.136 g/cm3, μ(MoK α) = 2.143 mm−1. The structure was solved with the program for automatic analysis of Patterson’s function and refined by full-matrix least squares in an anisotropic approximation for all non-hydrogen atoms using 753 independent reflections; R 1 = 0.0203. The square environment of the Cu atom is formed from the amino nitrogen atoms of the hydrazine fragments and the C=O oxygen atoms of the two semicarbazide bidentate molecules (Cu-N 1.928 Å, Cu-O 1.999 Å). The axial positions are occupied by the O atoms of the NO 3 outer-spheric anions (Cu-O 2.505 Å). In the structure, the complex cations and the NO 3 anions are linked into a framework by N-H...O type hydrogen bonds. Original Russian Text Copyright ? 2007 by G. V. Romanenko, Z. A. Savelieva, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 2, pp. 370–373, March–April, 2007.  相似文献   

15.
The crystal structures of compounds from the series [M(NH3)5Cl](NO3)2, (M = Ir, Rh, Ru) were described. The compounds crystallized in the tetragonal crystal system, space group I4, Z = 2. Crystal data for [Ir(NH3)5Cl](NO3)2 (I): a = 7.6061(1) Å, b = 7.6061(1) Å, c = 10.4039(2) Å, V = 601.894(16) Å3, ρcalc = 2.410 g/cm3, R = 0.0087; [Rh(NH3)5Cl](NO3)2 (II): a = 7.5858(5) Å, b = 7.5858(5) Å, c = 10.41357(7) Å, V = 599.24(7) Å3, ρcalc = 1.926 g/cm3, R = 0.0255; [Ru(NH3)5Cl](NO3)2 (III): a = 7.5811(6) Å, b = 7.5811(6) Å, c = 10.5352(14) Å, V = 605.49(11) Å3, ρcalc = 1.896 g/cm3, R = 0.0266. The compounds were defined by IR spectroscopy and XRPA and thermal analyses.  相似文献   

16.
Density functional theory calculations have been carried out to investigate the [2?+?x] x?=?1, 2, and 3 cycloaddition reactions (paths A, B, and C) of triatomic sulfur (S3) with the C70 fullerene in terms of geometry, energies, and electronic structures. The thiozonation (S3) on the hexagon–hexagon and hexagon–pentagon bonds of the C70 fullerene through 1,3-dipolar reaction, i.e., [2?+?3] cycloaddition, is generally exothermic, while through the chelotrope additions, i.e., [2?+?1] cycloaddition, are endothermic. The results indicate that the 1,3-dipolar cycloaddition is the most preferable path. Having more negative values of reaction energies Er together with the lower barrier heights, thiozonation of the hexagon–hexagon bonds is thermodynamically and kinetically more favorable than hexagon–pentagon ones. Moreover, the addition of thiozone to the hexagon–hexagon bonds near the pole area of the C70 leads to more negative reaction energies. Therefore, it is established that the arrangement and position of C=C bonds play an important role in the thiozonation of C70 fullerene. Thiozonolysis of triatomic sulfur (S3) indicates that S–S bond cleavage has not occurred, instead a sulfur bridge over a C–C bond or a four-membered ring of 1,2-dithietane-1-sulfide is preferred to be formed.  相似文献   

17.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new environmentally friendly inorganic pigments. Chemical compounds of the (Bi2O3)1–x(Er2O3)x type were synthetized. The host lattice of these pigments is Bi2O3 that is doped by Er3+ ions. The incorporation of doped ions provides interesting colours and contributes to an increase in the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments.  相似文献   

18.
Homogeneous MnIn2S4 single crystals ∼14 mm in diameter and ∼40 mm long were grown by directional solidification of melt. For these MnIn2S4 single crystals, the composition was determined by electron probe microanalysis, structure by X-ray diffraction, and melting temperature by differential thermal analysis. Transmission spectra were studied in these single crystals, in the region of the intrinsic absorption edge within 10–300 K. The transmission spectra were used to determine the bandgap width, and it was plotted as a function of temperature. The thermal expansion of MnIn2S4 single crystals was studied dilatometrically in the range 80–700 K, and the thermal expansion coefficient was determined.  相似文献   

19.
The structural parameters of s-trans- and s-cis-isomers of a methacrolein molecule in the ground (S0) electronic state are determined by means of MP2 method with the cc-pVTZ basis set. Kinematic factor F(φ) is expanded in a Fourier series. The potential function of internal rotation (PFIR) of methacrolein in this state is built using experimental frequencies of transitions of the torsional vibration of both isomers, obtained from an analysis of the vibrational structure of the high-resolution UV spectrum with allowance for the geometry and difference between the energy (ΔH) of the isomers. It is shown that the Vn parameters of the potential function of internal rotation of the molecule, built using the frequencies of the transition of the torsional vibrations of s-trans- and s-cis-isomers of the methacrolein molecule, determined from vibrational structure of the high-resolution UV spectrum and the FTIR spectrum, are close.  相似文献   

20.
[Mn(NH3)6](NO3)2 crystallizes in the cubic, fluorite (C1) type crystal lattice structure (Fm \( \overline{3} \) m) with a = 11.0056 Å and Z = 4. Two phase transitions of the first-order type were detected. The first registered on DSC curves as a large anomaly at T C1 h  = 207.8 K and T C1 c  = 207.2 K, and the second registered as a smaller anomaly at T C2 h  = 184.4 K and T C2 c  = 160.8 K (where the upper indexes h and c denote heating and cooling of the sample, respectively). The temperature dependence of the full width at half maximum of the band associated with the δs(HNH)F1u mode suggests that the NH3 ligands in the high temperature and intermediate phase reorientate quickly with correlation times in the order of several picoseconds and with activation energy of 9.9 kJ mol?1. In the phase transition at T C2 c probably only a some of the NH3 ligands stop their reorientation, while the remainders continue to reorientate quickly with activation energy of 7.7 kJ mol?1. Thermal decomposition of the investigated compound starts at 305 K and continues up to 525 K in four main stages (I–IV). In stage I, 2/6 of all NH3 ligands were seceded. Stages II and III are connected with an abruption of the next 2/6 and 1/6 of total NH3, respectively, and [Mn(NH3)](NO3)2 is formed. The last molecule of NH3 per formula unit is freed at stage IV together with the simultaneous thermal decomposition of the resulting Mn(NO3)2 leading to the formation of gaseous products (O2, H2O, N2 and nitrogen oxides) and solid MnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号