首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A whole dataset containing 55 hydrogen bonds were studied at the MP2∕aug-cc-pVTZ level of theory. The changes of geometries and stretching vibrational frequencies show that there are 31 redshifted and 24 blueshifted hydrogen-bonded complexes. Natural bond orbital analysis was carried out at the B3LYP∕aug-cc-pVTZ level of theory to obtain the electron densities in the bonding and antibonding orbitals of the proton donor X-H bond, which are closely associated with its bond length. Based on their relationship, a generally applicable method considering both the electron densities in the bonding and antibonding orbitals of the proton donor X-H bond has been developed to quantitatively describe the hyperconjugative effect on the X-H bond length changes in these hydrogen-bonded complexes.  相似文献   

2.
The influence of the X-group in CH3X type molecules on the frequency of the C-H symmetrical stretching vibration has been investigated by means of normal coordinate analysis and CNDO/2 partial force constant and localized orbital calculations. The frequency of the C—H symmetrical stretching vibration was found to be dependent on the HCH angle α and the C—H symmetrical stretching force constant FCH. By studying the partial force constants for a number of CH3X type molecules a distinct relation between FCH and the C—H bond length could be shown. With the help of localized orbital calculations a relation was found between the C—H bond length and the percentage ionic character of the C—H bond.  相似文献   

3.
Quadratic quantum-chemical force fields have been determined for s-trans-1,3-butadiene using B3LYP and MP2 methods. Basis sets included 6-311++G, cc-pVTZ, and aug-cc-pVTZ. Scaling of the force fields was based on frequency data for up to 11 isotopomers, some of these data being original. A total of 18 scale factors were employed, with, in addition, an alteration to one off-diagonal force constant in the A(u) species. MP2 calculations without f functions in the basis perform badly in respect of out-of-plane bending mode frequencies. Centrifugal distortion constants and harmonic contributions to vibration-rotation constants (alphas) have been calculated. Existing experimental frequency data for all isotopomers are scrutinized, and a number of reassignments and diagnoses of Fermi resonance made, particularly in the nu(CH) region. The three types of CH bond in butadiene were characterized in terms of bond length and isolated CH stretching frequency, the latter reflecting data in the nu(CD) region. Broad agreement was achieved with earlier results from local mode studies. Differences in CH bond properties resemble similar differences in propene. A simplified sample setup for recording FT-Raman spectra of gases was applied to four isotopomers of butadiene.  相似文献   

4.
B3LYP/6-311+G(d,p) calculations were used to explore the geometry, intermolecular energy and the vibrational harmonic spectrum of heterocyclic complexes formed between 2,5-dihydrofuran and thiophene cyclic ethers and the HCl and HF acids. The simulated structures of these hydrogen complexes are discussed in terms of the linearity deviation of the n...HX hydrogen bond. Theoretical results are satisfactory as compared to the experimental equilibrium structure. The energies of the hydrogen bonds were determinate through the difference between the complex and its correspondent isolated monomers. Moreover, to obtain the correct energies of the hydrogen bonds, it was included the values of the zero point vibrational energy and the basis set superposition error. The infrared spectra reveal the direct relationship between the distance of the hydrogen bond and its stretching frequencies, as well as a good interpretation of the bathochromic effect of the HCl and HF stretching modes from intermolecular charge transfer.  相似文献   

5.
Ab initio, DFT, and AIM theoretical studies on H-, Cl-, and Li-bonded complexes have been carried out with typical lone pair (H2O), pi (C2H4) and sigma (H2) bonded pairs, and unpaired (CH3) electrons as acceptors and HF, ClF, and LiF as donors. Optimization and frequency calculations have been carried out at reasonably high levels (MP2, DFT(B3LYP), and QCISD) with large basis sets up to aug-cc-pVTZ. Not surprisingly, all HF complexes show red shift in stretching frequency and the shift is correlated to the binding energy. However, the FCl...CH3 complex shows a large blue shift (about 200 cm-1), which appears to be the largest blue shift predicted for any weakly bound complex yet. Analysis of the normal modes of the complex indicates that the shift is due to the mixing of modes between donor and acceptor and it is qualitatively different from the blue shifts reported thus far in hydrogen-bonded complexes. For Cl- and Li-bonded complexes, a correlation between frequency shift and binding energy is not found. However, AIM theoretical analysis shows the similarity in all these interactions. The electron density at the bond critical point shows a strong correlation with the binding energy for H-, Cl-, and Li-bonded complexes. This appears to be the first report on a one-electron chlorine bond.  相似文献   

6.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

7.
A series of ring-shaped molecular complexes formed by H(3)N, HF and XY (X = Cl, Br and Y = F, Cl, Br) have been investigated at the MP2/aug-cc-pVTZ level of theory. Their optimized geometry, stretching mode, and interaction energy have been obtained. We found that each complex possesses two red-shifted hydrogen bonds and one red-shifted halogen bond, and the two hydrogen bonds exhibit strong cooperative effects on the halogen bond. The cooperativity among the NH(3)···FH, FH···XY and H(3)N···XY interactions leads to the formations of these complexes. The AIM analysis has been performed at the CCSD(T)/aug-cc-pVQZ level of theory to examine the topological characteristics at the bond critical point and at the ring critical point, confirming the coexistence of the two hydrogen bonds and one halogen bond for each complex. The NBO analysis carried out at the B3LYP/aug-cc-pVTZ level of theory demonstrates the effects of hyperconjugation, hybridization, and polarization coming into play during the hydrogen and halogen bonding formations processes, based on which a clockwise loop of charge transfer was discovered. The molecular electrostatic potential has been employed to explore the formation mechanisms of these molecular complexes.  相似文献   

8.
Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes.  相似文献   

9.
Summary The study of the vibrational data for a large number of cyano-complexes of the transition metals within a factored force field scheme (also known as Cotton-Kraihanzel force field) shows that CN bond strengths in these complexes only depend, to a good degree of approximation, on the coordination number and oxidation state of the central metal cation. This is summarized in a linear equation which provides a rough estimate for the CN stretching frequencies of many cyanocomplexes not fully characterized. For mixed ligand cyanocomplexes, the observed trends are rationalized in terms of the -acid properties of the hetero-ligand and a good correlation is found between the CN stretching force constant and the electronegativity of the hetero-ligand. When the cyano-group bridges two metal atoms in polynuclear complexes, a strengthening of the CN bond is apparent in the values of the force constants of the bridging groups, while the strength of the terminal cyano-group is not affected by the bridge formation.  相似文献   

10.
Properties of hydrogen bonds formed by 1:1 interaction of H2O with oxygen, nitrogen, sulphur and other electron donors have been evaluated by extended Hückel and CNDO methods and the results are discussed in relation to the experimental data. A detailed analysis of the variation of the dissociation energies and charge densities with bond distances is presented for the amine-water system. 1:2 complexes of water with donors are found to contain weaker hydrogen bonds than 1:1 complexes. Results of molecular orbital calculations on the hydrogen bonding of H2S and CH3SH with some donors are presented. The theoretical value of hydrogen bond dissociation energy varies linearly with the overlap population, and stretching force constant of the hydrogen bond as well as with the experimental O—H frequency shift.  相似文献   

11.
Ab initio quantum mechanics methods are employed to investigate hydrogen bonding interactions between HNO and HCO, HOO radicals, and closed‐shell HNO. The systems were calculated at MP2/6‐311++G (2d, 2p) level and G2MP2 level. The topological and NBO analysis were investigated the origin of hydrogen bonds red‐ or blue‐shifts. In addition, the comparisons were performed between HNO‐opened‐shell radical (HCO, HOO) complexes and HNO‐corresponding closed‐shell molecule (H2CO, HOOH) complexes. It is found that the stabilities of complexes increase from HNO‐HCO to HNO‐HOO. There are blue‐shifts of N? H, C? H stretching vibrational frequencies and a red‐shift of O? H stretching vibrational frequency in the complexes. Rehybridization and electron density redistribution contribute to the blue‐shifts of C? H and N? H stretching vibrational frequencies. Compared with the closed‐shell H2CO, HCO is weaker proton donor and weaker proton acceptor. For the HOO, it is stronger proton donor and weaker proton acceptor than the HOOH is. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

12.
Vibrational properties (band position, Infrared and Raman intensities) of the acetonitrile C[triple bond]N stretching mode were studied in 27 gas-phase medium intensity (length range: = 1.71-2.05 angstroms; -deltaE range = 13-48 kJ/mol) hydrogen-bonded 1:1 complexes of CH3CN with organic and inorganic acids using density functional theory (DFT) calculations [B3LYP-6-31++G(2d,2p)]. Furthermore, general characteristics of the hydrogen bonds and vibrational changes in the OH stretching band of the acids were also considered. Experimentally observed blue-shifts of the C[triple bond]N stretching band promoted by the hydrogen bonding, which shortens the triple bond length, are very well reproduced and quantitatively depend on the hydrogen bond length. Both predicted enhancement of the infrared and Raman nu(C[triple bond]N) band intensities are in good agreement with the experimental results. Infrared band intensity increase is a direct function of the hydrogen bond energy. However, the predicted increase in the Raman band intensity increase is a more complex function, depending simultaneously on the characteristics of both the hydrogen bond (C[triple bond]N bond length) and the H-donating acid polarizability. Accounting for these two parameters, the calculated nu(C[triple bond]N) Raman intensities of the complexes are explained with a mean error of +/- 2.4%.  相似文献   

13.
The equilibrium structures, binding energies, and vibrational spectra of the cyclic, hydrogen-bonded complexes formed between formaldehyde, H(2)CO, and hydrogen fluoride clusters, (HF)(1< or =n < or =4), are investigated by means of large-scale second-order M?ller-Plesset calculations with extended basis sets. All studied complexes exhibit marked blue shifts of the C-H stretching frequencies, exceeding 100 cm(-1) for n = 2-4. It is shown that these blue shifts are, however, only to a minor part caused by blue-shifting hydrogen bonding via C-H...F contacts. The major part arises due to the structural relaxation of the H(2)CO molecule under the formation of a strong C=O...H-F hydrogen bond which strengthens as n increases. The close correlation between the different structural parameters in the studied series of complexes is demonstrated, and the consequences for the frequency shifts in the complexes are pointed out, corroborating thus the suggestion of the primary role of the C=O...H-F hydrogen bonding for the C-H stretching frequency shifts. This particular behavior, that the appearance of an increasingly stronger blue shift of the C-H stretching frequencies is mainly induced by the formation of a progressively stronger C=O...H-F hydrogen bond in the series of H(2)CO...(HF)(1< or =n < or =4), complexes and only to a lesser degree by the formation of the so-called blue-shifting C-H...F hydrogen bond, is rationalized with the aid of selected sections of the intramolecular H(2)CO potential energy surface and by performing a variety of structural optimizations of the H(2)CO molecule embedded in external, differently oriented dipole electric fields, and also by invoking a simple analytical force-field model.  相似文献   

14.
Quantum calculations at the MP2/cc-pVTZ, MP2/aug-cc-pVTZ, and CCSD(T)/cc-pVTZ levels have been used to examine 1:1 and 1:2 complexes between O(2)NX (X = Cl, Br, and I) with NH(3). The interaction of the lone pair of the ammonia with the σ-hole and π-hole of O(2)NX molecules have been considered. The 1:1 complexes can easily be differentiated using the stretching frequency of the N-X bond. Thus, those complexes with σ-hole interaction show a blue shift of the N-X bond stretching whereas a red shift is observed in the complexes along the π-hole. The SAPT-DFT methodology has been used to gain insight on the source of the interaction energy. In the 1:2 complexes, the cooperative and diminutive energetic effects have been analyzed using the many-body interaction energies. The nature of the interactions has been characterized with the atoms in molecules (AIM) and natural bond orbital (NBO) methodologies. Stabilization energies of 1:1 and 1:2 complexes including the variation of the zero point vibrational energy (ΔZPVE) are in the ranges 7-26 and 14-46 kJ mol(-1), respectively.  相似文献   

15.
Hydrogen-bonded clusters, H(3)C-HCN, HCN-HCN, H(3)C-HCN-HCN, H(3)C-HNC, HNC-HNC, and H(3)C-HNC-HNC, have been studied by using ab initio calculations. The optimized structures, harmonic vibrational frequencies, and interaction energies are calculated at the MP2 level with aug-cc-pVTZ basis set. The cooperative effects in the properties of these complexes are investigated quantitatively. A cooperativity contribution of around 10% relative to the total interaction energy was found in the H(3)C-HCN-HCN complex. In the case of H(3)C-HNC-HNC complex, the cooperativity contribution is about 15%. The cooperativity contribution in the single-electron hydrogen bond is larger than that in the hydrogen bond of HCN-HCN and HNC-HNC complexes. NMR chemical shifts, charge transfers, and topological parameters also support such conclusions.  相似文献   

16.
Lyon JT  Cho HG  Andrews L  Hu HS  Li J 《Inorganic chemistry》2007,46(21):8728-8738
The XC[triple bond]ReX3 complexes (X = F, Cl) are produced by CX(4) reaction with laser-ablated Re atoms, following oxidative C-X insertion and alpha-halogen migration in favor of the carbon-metal triple bond and are identified through the observation of characteristic absorptions in the argon matrix infrared spectra and comparison with vibrational frequencies calculated by density functional theory. The methylidyne C-F and C-Cl stretching absorptions are observed near 1584 and 1328 cm-1, and the C-H stretching modes for HC[triple bond]ReX3 at 3104 and 3097 cm(-1), respectively, which are substantially higher than the precursor stretching modes and in agreement with the general trend that higher s-orbital character in carbon hybridization leads to a higher stretching frequency. The Jahn-Teller effect in the doublet-state XC[triple bond]ReX3 and HC[triple bond]ReX3 complexes gives rise to distorted structures with Cs symmetry and two equivalent longer Re-X bonds and one slightly shorter Re-X bond.  相似文献   

17.
A theoretical study of the hydride bond complexes with tetrafluoro- and tetracyanoethylene, C2F4 and C2(CN)4, has been carried out by means of density functional theory (DFT) and ab initio methods, up to the MP2/aug-cc-pVTZ computational level. In addition, the ternary complexes formed by an additional standard hydrogen bond donor, such as hydrogen fluoride, have been explored. The results show that the hydride bond complexes are stable and an electron transfer took place from the hydride to the C2F4 and C2(CN)4 molecules. While these molecules are not able to form stable complexes between the pi-electrons and hydrogen bond donors, the presence of the hydrides in the opposite face of the pi-system of C2F4 stabilizes the ternary complexes showing cooperativity effects.  相似文献   

18.
在CH3SLi+CH3SH势能面上求得锂键和氢键共存型复合物的两种稳定构型.频率分析表明,与单体相比复合物中S(5)—Li(6)键伸缩振动频率发生红移,而C(8)—H(10)键伸缩振动频率发生蓝移.经B3LYP/6-311++G**,MP2/6-311++G**及MP2/AUG-CC-PVDZ水平计算的含基组重叠误差(BSSE)校正的复合物Ⅰ中相互作用能分别为-58.99,-57.87和-62.89kJ·mol-1.采用自然键轨道(NBO)理论,分析了复合物中单体轨道间的电荷转移,电子密度重排及其与相关键键长变化的本质等.采用分子中的原子(AIM)理论分析了复合物中氢键和锂键的电子密度拓扑性质.在极化连续模型(PCM)下,考察了溶剂化效应.结果表明,所考察的水、二甲亚砜、乙醇和乙醚等四种溶剂均使单体间的相互作用能增大,且溶剂对复合物中的锂键结构及其振动频率具有显著的影响,而对复合物中的氢键的振动频率影响不大.  相似文献   

19.
Vibrational properties (band position, infrared [IR], and Raman intensities) of C?N stretching mode were studied in 65 gas phase hydrogen‐bonded 1:1 complexes of HCN with OH acids and NH acids using density functional theory (DFT) calculations at the B3LYP‐6‐311++G(d,p) level. Furthermore, general characteristics of the hydrogen bonds and vibrational changes in acids OH/NH stretching bands were also considered. Experimentally observed blue shift of the C?N stretching band promoted by hydrogen bonding, which shortens the triple bond length, is very well reproduced and quantitatively depends on the hydrogen bond length. Both IR and Raman ν(C?N) band intensities are enhanced, also in good agreement with the experimental results. IR intensity increase is a direct function of the hydrogen bond energy. However, the predicted Raman intensity raise is a more complex function, depending simultaneously on characteristics of both the hydrogen bond (C?N bond length) and the H‐donating acid (polarizability). With these two parameters, ν (C?N) Raman intensities of the complexes are explained with a mean error of ±2.4%. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

20.
In this study, 16 gas phase complexes of the pairs of XCHZ and CO(2) (X = F, Cl, Br; Z = O, S) have been identified. Interaction energies calculated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level including both BSSE and ZPE corrections range from -5.6 to -10.5 kJ mol(-1) for XCHOCO(2) and from -5.7 to -9.1 kJ mol(-1) for XCHS···CO(2). Substitution of one H atom by one halogen in formaldehyde and thioformaldehyde reduces the interaction energy of XCHZ···CO(2), while a CH(3) substitution increases the interaction energy of both CH(3)CHO···CO(2) and CH(3)CHS···CO(2). NBO and AIM analyses also point out that the strength of Lewis acid-base interactions decreases going from >C1=S3···C6 to >C1=O3C6 and to >C1-X4···C6. This result suggests the higher capacity of solubility of thiocarbonyl compounds in scCO(2), providing an enormous potential application for designing CO(2)-philic materials based on the >C=S functional group in competition with >C=O. The Lewis acid-base interaction of the types >C=S···C, >C-Cl···C and >C-Br···C is demonstrated for the first time. The contribution of the hydrogen bonding interaction to the total interaction energy is larger for XCHS···CO(2) than for XCHO···CO(2). Upon complexation, a contraction of the C1-H2 bond length and a blue shift of its stretching frequency have been observed, as compared to the isolated monomer, indicating the existence of a blue-shifting hydrogen bond in all complexes examined. Calculated results also lend further support for the viewpoint that when acting as proton donor, a C-H bond having a weaker polarization will induce a stronger distance contraction and frequency blue shift upon complexation, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号