首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— While studying the photoreduction of some dyes (D) by reducing agents (R), it was observed that the quantum yield of the photoreduction increases considerably upon addition of a third substance (C), whereas it is very small when the dye is photoreduced by C alone (catalytic effect), (see Table 1).
The system thionine (D), allylthiourea (R), and azulene (C) was investigated in detail using both flash photolysis and continuous illumination. On photolysis, thionine is converted into its photo-reduced form, leucothionine. Azulene reacts with the basic form of the thionine triplet 3 TH + to produce the semithionine radical. In the system thionine and azulene, most of these radicals revert back to thionine. When ATU (˜ 102- M ) is added to thionine and azulene (3 × 10-4 M ), the semithionine radicals are reduced to leucothionine; the quantum yield of this reduction is considerably higher than in the system thionine and allylthiourea. Flash experiments demonstrate that allylthiourea does not react with the semithionine radicals.
At very high ATU concentrations (≥ 10-1 M ), however, the primary reaction is between thionine triplet and allylthiourea; under these conditions the quantum yield is not influenced by azulene (3 × 10-4 M ).  相似文献   

2.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

3.
Abstract— The kinetics of the triplet-triplet energy transfer of chlorophyll α (Cha) to β carotene (Car) has been investigated in Triton X100 micelles by 353 nm laser flash photolysis. This transfer consists of an intramicellar process involving pigment species located in the same micelle. A kinetic model using a bimolecular treatment leads to a rate constant of the energy transfer in the micellar phase ( k tm≅ 6 × 108 M -1 s-1) lower than the previously determined values in homogeneous solvents ( k t≅ 4.6 ≅ 109 M -ls-l); this result shows the high microviscosity of the micellar core. In addition, the apparent bimolecular rate constant ( k t≅ 5.0 ≅ 1010 M -l s-1) appears to be an order of magnitude higher than in homogeneous solvents. The lifetime of the carotene triplet state is the same in the hydrophobic core of Triton X100 micelles (τ a = 7.7 μs) as in organic solvents (hexane or carbon disulfide). The transfer yield is controlled by the distribution of chlorophyll and carotene molecules in the micelles.  相似文献   

4.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

5.
Abstract— Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals "OH and" CH2OH. OH reacts further with ethylene glycol in the presence of O2 to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.  相似文献   

6.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

7.
Encapsulating a xanthene dye in phospholipid vesicles produces vesicle solutions that contain dye at very high microscopic concentrations, but have a low overall optical density, thereby eliminating reabsorption. Using this system, we have studied the effects of concentration on the fluorescence lifetime of one such dye, sulforhodamine 101. We have observed that the lifetime decreases as a function of encapsulated dye concentration, which is indicative of collisional quenching. The lifetime decreases from 4.5 nsec for sulforhodamine in dilute aqueous solution to 0.69 ns at an encapsulated concentration of 33 m M . The bimolecular rate constant for this event is 2.6 1010 M -1 s-1, consistent with a diffusion controlled event. However, the quenching constant calculated from changes in intensity is 2.2 1011 M -1 s-1. Thus, collisional quenching is not the predominant mechanism of quenching. The absorption spectra of dye in vesicles indicate an important contribution from static complex formation. Förster distance calculations indicate that energy transfer can also occur to a significant extent, with a predicted efficiency of transfer of 34% at a dye concentration of only 1 m M  相似文献   

8.
Abstract— The rate constant for total quenching of singlet oxygen by ascorbic acid has been determined using the inhibition of the bleaching of 9, 10-dimethylanthracene by AA in pyridine. The rate constant was 8.4 × 10-6 M -1 s-1, as determined photochemically, and 1.06 10-7 M -1 s-1 as determined in a dark reaction.  相似文献   

9.
Abstract— The addition of FMNH2 to Vibrio harveyi luciferase at 2°C in the presence of tetradecanal results in the formation of a highly fluorescent transient species with a spectral distribution indistinguishable from that of the bioluminescence. The bioluminescence reaches maximum intensity in 1.5 s and decays in a complex manner with exponential components of 10-1s-1, 7 × 10-3s-1, and 7 × 10 4s-1. The fluorescent transient rises exponentially at 7 × 10-2s-3 and decays at 3 × 10-4s-1. The slowest bioluminescence component, comprising the bulk of the bioluminescence, decays at twice the rate of the fluorescent transient under all variations of reaction conditions: concentration of reactants, temperature 2–20°C, and aldehyde chain length—decanal, dodecanal and tetradecanal. The activation energy for both the slowest bioluminescence decay and the transient fluorescence decay is 80 kJ-mol-1. An energy transfer scheme is proposed to explain the results where two distinct chemically energized species utilize the fluorescent transient as emitter for the slower bioluminescences, and for the faster process a fluorophore present in the protein preparation. Kinetic observations suggest that typical preparations of V. harveyi luciferase comprise 15% active protein.  相似文献   

10.
Abstract— Radiolytic formation and peroxidation of fatty acid radicals have been investigated by pulse radiolysis techniques in oleate, linoleate, linolenate and arachidonate systems. A strong absorption band at 280 nm associated with conjugated radicals, Rconj, formed in polyunsaturated fatty acid moieties has been used as a probe for kinetic processes occurring at doubly allylic sites in the hydrocarbon chain. Formation of Rconj by O- has been found to be more efficient than the less selective OH radical. Peroxidation of Rconj is shown to be somewhat slower, ( k R+ O2˜ 3 × 108 M -1 s-1), than O2 reactions with radicals in oleate ( k R+ O2= 1 × 109 M -1 s-1). Peroxy radicals generated in these reactions disappear slowly by essentially second order processes (2 k RO1˜ 107 M -1 s-1). The superoxide radical, O-2, shows little if any reactivity towards 0.01 M linolenate or arachidonate over periods of 20 s.  相似文献   

11.
Abstract—
Photosensitized L-biopterin induces the transfer of a hydrogen atom from the dihydronico-tinamide moiety of NADPH to the biopterin ring. Sensitization occurs through the triplet state of both the lactim and lactam tautomers of L-biopterin. Quenching kinetic analysis to measure the bimolecular rate constant demonstrated a greater reactivity for the lactim tautomer. Recombinant human dihydro-folate reductase enzyme, for which these molecules are substrate and cofactor, enhanced the rate constant of the photosensitized H transfer to the apparent lactim tautomer by eight times to 1.6 × 1010 M -1s-1. When NADP+ replaced NADPH at the active site, no enhanced photoreduction of biopterin was observed, implying that the hydrogen atom comes from the reduced nicotinamide group and not as a result of protein conformational changes. This reduction at the active site represents a photoinitiated H transfer in protein between substrate and cofactor.  相似文献   

12.
Abstract— A photobiological assay based upon inhibition of growth in the DNA repair-deficient bacterium E. coli B s-1, is described for the analysis of a number of photosensitizing agents. The lower limits of detection were as follows: psoralen 5 × 10-11g; 5-methoxypsoralen 1 × 10-9 g; 8-methoxypsoralen 1 × 10-9 g; 4,5',8-trimethylpsoralen 1 × 10-11 g; angelicin 5 × 10-9 g; 5,7-di-methoxycoumarin 1 × 10-7 g; isoimperatorin 5 × 10-9 g; dictamnine 1 × 10-8 g; oxypeucedanin 5 × 10-7 g; 5-nitroxanthotoxin 5 × 10-7 g; and α-terthienyl 1 × 10-6 g. All active compounds with the exception of α-terthienyl were more easily detected by several orders of magnitude by E. coli B s-1 than with the normal wild type E. coli. 5—Geranoxypsoralen and isopimpinellin were not active. The application of this technique, after TLC, to the analysis of complex mixtures from lemon oil, oil of bergamot, Heracleum lanatum, Angelica dawsonii , and celery and parsnip is illustrated. The bioassay described is more rapid and sensitive than previously published methods, permits replica plates to be made, and allows tentative identification of the photosensitized molecular target.  相似文献   

13.
Abstract—
The reactions of the excited states of safranine T with aliphatic amines have been studied in methanol and acetonitrile. Quenching of the singlet and triplet states occurs by different mechanisms. Whereas the former excited state is quenched by a charge-transfer mechanism, the triplet state is quenched through proton transfer from the excited dye to the amine. This process leads to the unprotonated form of the dye in the triplet state, which is later quenched by amines to form the corresponding semireduced species. The monoprotonated triplet also undergoes self-quenching in both solvents (k = 1.2 × 108 M -1 s-1).  相似文献   

14.
Abstract— Chlorophyll a (chl a ) adsorbed on milk proteins or lipoproteins has absorption maxima at 437 ± 1 nm and 671 ± 1 nm, whatever its concentration. A 750-nm-absorbing form appears when (chl/proteins) > 2 × 10-2 mg chl/mg proteins, in the case of lipoproteins; or 4.5 × 10-3 mg chl/mg proteins, in the case of proteins. In both cases, the apparent molar extinction coefficient at 671 nm is the same (3 × 104 liter mole-1 cm-1) at the highest (chl/proteins) ratio for which no 750 nm absorbancy appears. It is shown that adsorbed chl a undergoes irreversible (in the present conditions) photo-oxidation by light in the presence of oxygen. The reaction is second order, with similar rate constants for chl a adsorbed to proteins or to lipoproteins.  相似文献   

15.
Abstract— The triplet state of orotic acid has been studied by flash photolysis. The rate for dimerization has been observed to vary from 2 × 109 M -1 sec-1 at pH 1 where both the triplet and ground state molecules are neutral, to under 108 M-1 sec-1 above pH 9 where both the triplet and ground state molecules are doubly ionized. The p K of the triplet state has been measured as 4.6. The rate of oxygen quenching for the triplet is 2–3 × 109 M-1 sec-1 while the rate of radiationless decay in solution is 0.73 × 104 sec-1. The triplet absorption spectra have been measured for the two ionic forms of the triplet.  相似文献   

16.
Abstract— The oxidation of purpurogalline (PPG) by alkaline solution of H2O2 pH 9–11 at 298°K is accompanied by chemiluminescence (CL) in the spectral range 400–600 nm with the maximum at 500 nm and quantum yield about 10-6. The optimal concentrations of reactants with respect to maximal intensity are: 2 × 10-4 M PPG, 10-2 M NaOH, 1 M H2O2. Activation energy calculated from the maximum intensity of CL is 8.1×0.4 kcal/mole. Light emission occurs only when OH-groups of the phenolic ring of PPG undergo oxidation and the blue anion of o -PPG-quinone is formed. The rate that determines step in the reaction associated with luminescence is the nucleophilic attack of OOH- ion on the blue anion of o -PPG-quinone. In this exergonic step (-ΔH = 63 to 230kcal/mole) the o - and/or p -quinone ring is opened and carbonyl derivatives of α-tropolone are produced. They display fluorescence in the region 400–600 nm. The fluorescence spectrum of the reaction mixture after oxidation of PPG is very close to that of CL. It is likely that carbonyl derivatives of α-tropolone are emitters of CL.  相似文献   

17.
Abstract— The antimicrobial drug ethidium bromide (EB) has been found to form molecular complexes with nucleotides, the strongest being those with the purines AMP and GMP. For the EB-AMP and EB-GMP complexes (which we characterized) the values of the ground-state association constant have been found to be 100 and 103 M -1, respectively. The fluorescence of the drug is enhanced when complexed to AMP, GMP, and TMP by about 60, 30 and 10%, respectively, whereas it is quenched by about 20% when complexed to CMP. Fluorescence enhancement analysis has yielded the values of 1.1 × 1010 and 0.7 × 1010 M -1 s-1 for the excited-state rate constant of complex formation with the former two nucleotides, respectively. About one out of two collisions between an excited EB molecule and an AMP or GMP molecule results in complex formation. The potential implications of these findings for the EB-DNA interaction are discussed.  相似文献   

18.
Abstract— Photosensitized reduction of zwitterionic viologen (SPV) and methyl viologen (MV2+) was investigated using an amphiliphilic copolymer having phenanthryl and sulfonate groups (APh) as photosensitizer in aqueous solutions. In the presence of triethanolamine the accumulation of SPV * (photoproduct) was found to be faster than that of MV+. This attributed to the electrostatic repulsion between SPV. and anionic segments of APh. Such difference between SPV and MV2+ was minimized in the case of the related monomer model. Retardation of the back reaction for the APh-SPV system was also demonstrated by laser photolysis, k b= 8.7 × 107 M -1 s-1 for the polymer system as compared to k b= 2.8 × 109 M -1 s-1 for the monomer model system. Strong salt-effects on the yield of the photoreduction and the rate of back reaction confirm the strong electrostatic interaction between the photoproducts and polyanions. This remarkable electrostatic effect of the polyanions was simulated by electrochemical redox reactions by using a graphite electrode coated with APh.  相似文献   

19.
Abstract— The radical cations and anions of diphenylhexatriene have been produced and characterized in homogenous and micellar solutions by pulse radiolysis and laser flash photolysis techniques. Both types of radical ions were formed in cyclohexane on pulse radiolysis. The radical cation was formed in dichloroethane on pulse radiolysis, and by two photon photoionization in ethanol, dichloroethane, and various micelles. Both radical ions have intense ( 105 M -1 cm-1) absorption peaks at600–650nm. The cation peak occurs at slightly shorter wavelengths than that of the anion.
In micelles and vesicles the radical anion of carotene was formed by electron transfer from ea– on pulse radiolysis. The radical cation was formed on pulse radiolysis of micellar solutions containing Br-2 as counterion, presumably by electron transfer to Br2-. The spectra agree with those of the radical cation and anion of carotene that have previously been obtained in homogenous solutions (Dawe and Land, 1975).
Electron transfer in micelles and vesicles from the radical anion of biphenyl to carotene and diphenylhexatriene, and from the radical anions of these to inorganic acceptors has been studied.  相似文献   

20.
FLUORESCENCE OF 5-METHYLCYTOSINE   总被引:2,自引:0,他引:2  
Abstract— 5-Methylcytosine and 5-methyldeoxycytidylic acid are fluorescent in aqueous solution at room temperature and neutral pH. 5-Methylcytosine, 10-3M, pH 8.5, 25°C, has a quantum yield of 5 ×10-4, 5-Methyldeoxycitydylic acid, 10-4M, pH 7.5, 20°C, has a quantum yield of 8 × 10-4. Emission maxima are 2.91 and 2.80μ-1. At pH 14, the quantum yield of 5-methylcytosine is 1.6 × 10-2; the emission maximum is 2.82μ-1. At pH I, the quantum yield of both compounds is less than or equal to 10-4. Both compounds were chromatographically homogeneous, had absorption spectra which agreed with published data, and excitation spectra which agreed closely with absorption spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号