首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this paper, based on three-dimensional linear generalized thermoelasticity, an exact analysis of free vibration of a simply supported homogeneous isotropic, thermally conducting, cylindrical panel with voids initially at uniform temperature and undeformed state has been presented. Three displacement potential functions are introduced for solving the equations of motion, heat conduction and volume fraction field. The purely transverse wave gets decoupled from rest of motion and is not affected by thermal and volume fraction (voids) fields. After expanding the displacement potentials, volume fraction and temperature functions with orthogonal series, the equations of the considered vibration problem are reduced to five-second order coupled ordinary differential equations whose formal solution can be expressed by using Bessel functions with complex arguments. The corresponding results for thermoelastic panel without voids, elastic panel with and without voids have been deduced as special cases from the present analysis. In order to illustrate the analytical results, the numerical solutions of various relations and equations have been obtained to compute the lowest frequency as function of different cylindrical panel parameters. The computer simulated results have been presented graphically.  相似文献   

2.
Based on the 3D thermoelasticity theory, the thermoelastic analysis of laminated cylindrical panels with finite length and functionally graded (FG) layers subjected to three-dimensional (3D) thermal loading are presented. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The variations of the field variables across the panel thickness are accurately modeled by using a layerwise differential quadrature (DQ) approach. After validating the approach, as an important application, two common types of FG sandwich cylindrical panels, namely, the sandwich panels with FG face sheets and homogeneous core and the sandwich panels with homogeneous face sheets and FG core are analyzed. The effect of micromechanical modeling of the material properties on the thermoelastic behavior of the panels is studied by comparing the results obtained using the rule of mixture and Mori–Tanaka scheme. The comparison studies reveal that the difference between the results of the two micromechanical models is very small and can be neglected. Then, the effects of different geometrical parameters, material graded index and also the temperature dependence of the material properties on the thermoelastic behavior of the FG sandwich cylindrical panels are carried out.  相似文献   

3.
Summary  This paper investigates the stress-focusing effect in an infinitely long cylinder under rotationally asymmetrical instantaneous thermal loading on the basis of the generalized thermoelastic Lord–Shulman (L-S) and Green–Lindsay (G-L) theories. Combined forms of the governing equations of both theories are given in a cylindrical coordinate system. The two-dimensional generalized thermoelastic problems are solved by numerical inversion of Laplace transform. Calculations have been performed to find distributions of thermal stresses on the basis of the L-S theory. Stress-focusing phenomena under different heating conditions are presented. The effects of thermomechanical coupling and relaxation time on the stress-focusing phenomena as well as the singularity of stresses are discussed. Received 15 November 2000; accepted for publication 15 November 2001  相似文献   

4.
Ieşan  D.  Nappa  L. 《Meccanica》2004,39(2):125-138
This paper is concerned with the linear theory of thermoelastic materials with voids. We present a method to reduce the thermoelastic problem to an isothermal one with zero body loads and with certain known boundary data. The results are used to study the thermal stresses in a tube and the thermoelastic deformation of a cylinder subjected to a uniform temperature gradient.  相似文献   

5.
计及材料物性与温度的相关性,基于Green-Naghdi能量无耗散广义热弹性理论(G-N II理论),对热冲击下具有变物性特征材料的热弹性响应进行了求解分析。借助Laplace正、反变换技术以及Krichhoff变换,在热物性参数随真实温度呈线性规律的前提下,推导了半无限大体受热冲击作用时热弹性响应的解析表达式,通过求解分析,得到了热冲击下热波、热弹性波的传播规律,位移场、温度场以及应力场的分布情况,以及物性随温度相关性对热弹性响应的影响效果。结果表明:当考虑材料物性随温度的变化时,热波、热弹性波的传播以及各物理场的分布均受到不同程度的影响,且物性随温度相关性对热弹性响应的作用效果将受到材料热-力耦合特性的影响。  相似文献   

6.
This paper is concerned with the theoretical treatment of transient piezothermoelastic problem is developed for a cylindrical composite panel composed of angle-ply laminae and piezoelectric material of crystal class mm2, subject to non-uniform heat supply in the circumferential direction. We obtain the exact solution for the two-dimensional temperature change in a transient state, and transient piezothermoelastic response of a simple supported cylindrical composite panel under the state of generalized plane deformation. As an example, numerical calculations are carried out for an angle-ply laminated composite panel made of alumina fiber reinforced aluminum composite, associated with a piezoelectric layer of a cadmium selenide solid. Some numerical results for temperature change, displacement, stress and electric potential distributions in a transient state are shown in figures. Furthermore, the influence of thickness of the angle-ply laminate is investigated.  相似文献   

7.
A thermoelastic problem of a circular annulus made of functionally graded materials with an arbitrary gradient is investigated. Different from previous works, our analysis neither requires a special form of the gradient of material properties nor demands partitioning the entire structure into a multilayered homogeneous structure. Instead, we propose a new method for solving the thermoelastic problem of a functionally graded circular annulus by transforming it to a Fredholm integral equation. The distribution of thermal stresses and radial displacement can be obtained by solving the resulting equation. Illustrative examples are given to show the effects of varying gradients on the thermal stresses and radial displacement for given temperature changes at the inner and outer surfaces. The results indicate that the thermal stresses can be relaxed for specified gradients, which is beneficial to design an inhomogeneous annulus to maintain structural integrity.  相似文献   

8.
任意厚度层合开口柱壳的温度应力   总被引:1,自引:0,他引:1  
基于层合柱壳混合状态方程和边界条件的弱形式,建立了具有固支边的层合开口柱壳的温度应力混合方程,给出了任意厚度层合开口柱壳在温度荷载和机械荷载共同作用下的解析解。  相似文献   

9.
任意厚度层合闭口柱壳的轴对称温度应力   总被引:4,自引:0,他引:4  
丁克伟  唐立民 《计算力学学报》1998,15(2):161-166173
基于层合柱壳混合状态方程和边界条件的弱形式,在轴对称情况下,建立了两端固支层合闭口柱壳的温度应力混合方程,给出了任意厚层合柱壳在温度荷载和机械荷载共同作用下的解析解。  相似文献   

10.
This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with variable thermal properties were established by means of the fractional order calculus. The problem of a half-space formed of an elastic medium with variable thermal material properties was solved, and asymptotic solutions induced by a sudden temperature rise on the boundary were obtained by applying an asymptotic approach. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement,temperature and stresses were obtained and plotted. Variations in the distributions with different values of fractional order parameter were discussed. The results were compared with those obtained from the case of constant material properties to evaluate the effects of variable material properties on thermoelastic behaviors.  相似文献   

11.
An analytic solution is obtained to describe the vibrations and dissipative heating of a simply supported infinite cylindrical panel under periodic normal loads moving over its surface with a constant velocity. Special attention is focused on resonant vibrations, which result in the most intensive dissipative heating. It is additionally assumed that the material of the panel is viscoelastic, its properties are independent of temperature, and Poisson’s ratio is real. The influence of thickness, radius of curvature, load velocity, and viscoelastic properties on the thermal state of the panel is analysed against the thermal state of the plate__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 4, pp. 100–109, April 2005.  相似文献   

12.
We analyze the steady-state response of a functionally graded thick cylindrical shell subjected to thermal and mechanical loads. The functionally graded shell is simply supported at the edges and it is assumed to have an arbitrary variation of material properties in the radial direction. The three-dimensional steady-state heat conduction and thermoelasticity equations, simplified to the case of generalized plane strain deformations in the axial direction, are solved analytically. Suitable temperature and displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the thermoelastic equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are then solved by the power series method. In the present formulation, the cylindrical shell is assumed to be made of an orthotropic material, although the analytical solution is also valid for isotropic materials. Results are presented for two-constituent isotropic and fiber-reinforced functionally graded shells that have a smooth variation of material volume fractions, and/or in-plane fiber orientations, through the radial direction. The cylindrical shells are also analyzed using the Flügge and the Donnell shell theories. Displacements and stresses from the shell theories are compared with the three-dimensional exact solution to delineate the effects of transverse shear deformation, shell thickness and angular span.  相似文献   

13.
Probing the mechanism of ultrafast thermoelastic processes is becoming increasingly important with the development of laser-assisted micro/nano machining. Although thermoelastic models containing temperature rate have been historically proposed, the strain rate has not been considered yet. In this work, a generalized thermoelastic model is theoretically established by introducing the strain rate in Green–Lindsay (GL) thermoelastic model with the aid of extended thermodynamics. Numerically, a semi-infinite one-dimensional problem is considered with traction free at one end and subjected to a temperature rise. The problem is solved using the Laplace transform method, and the transient responses, i.e. displacement, temperature and stresses are graphically depicted. Interestingly, it is found that the strain rate may eliminate the discontinuity of the displacement at the elastic and thermal wave front. Also, the present model is compared with Green–Naghdi (GN) models. It is found that the thermal wave speed of the present model is faster than GN model without energy dissipation, and slower than GN model with energy dissipation. In addition, the thermoelastic responses from the present model are the largest. The present model based upon GL model is free of the jump of GL model in the displacement distribution, and is safer in engineering practices than GN model. The present work will benefit the theoretical modeling and numerical prediction of thermoelastic process, especially for those under extreme fast heating.  相似文献   

14.
球面各向同性球体内的动态热应力集中   总被引:1,自引:0,他引:1  
王熙 《力学学报》2000,32(2):245-250
利用有限克尔变换得到了求面各向同笥球体的热冲击作用下的动态热应力解析表达式。从表达式中,可以看出球中向同性球体的动态热应力集中现象明显不同于各向同性球体。另外,所描述的动态热应力集中现象与文献「1,3」也有一定的区别。  相似文献   

15.
The dynamic response of a homogeneous, isotropic, generalized thermoelastic half-space with voids subjected to normal, tangential force and thermal source is investigated. The displacements, stresses, temperature distribution and change in volume fraction field so obtained in the physical domain are computed numerically and illustrated graphically. The numerical results of these quantities for magnesium crystal-like material are illustrated to depict the response of various sources in the Lord–Shulman (L–S) theory and Green–Lindsay (G–L) theory for an insulated boundary and temperature gradient boundary. Some particular cases have been deduced.  相似文献   

16.
The one-dimensional problem of distribution of thermal stresses and temperature is considered in a generalized thermoelastic electrically conducting half-space permeated by a primary uniform magnetic field when the bounding plane is suddenly heated to a constant temperature.The Laplace transform technique is used to solve the problem. Inverse transforms are obtained in an approximate manner using asymptotic expansions valid for small values of time.Nurnerical computations for two particular cases are carried out.  相似文献   

17.
The model of generalized thermoelasticity proposed by dual phase lag (DPL), is applied to study the thermoelastic interactions in an infinite fiber-reinforced anisotropic medium with a circular hole. A decaying with time thermal field on the boundary of the hole, which is stress free, causes the thermoelastic interactions. The solutions for displacement, temperature, and stresses are obtained with the help of the finite element procedure. The effects of the reinforcement on temperature, stress, and displacement are studied. The exact solution in the case of isotropic medium is discussed explicitly. The accuracy of the finite element method validated by comparing between the finite element and exact solutions for absence the reinforcement.  相似文献   

18.
This article presents in a closed form new influence functions of a unit point heat source on the displacements for three boundary value problems of thermoelasticity for a half-plane. We also obtain the corresponding new integral formulas of Green’s and Poisson’s types that directly determine the thermoelastic displacements and stresses in the form of integrals of the products of specified internal heat sources or prescribed boundary temperature and constructed already thermoelastic influence functions (kernels). All these results are presented in terms of elementary functions in the form of three theorems. Based on these theorems and on derived early by author the general Green-type integral formula, we obtain in elementary functions new solutions to two particular boundary value problems of thermoelasticity for half-plane. The graphical presentation of the temperature and thermal stresses of one concrete boundary value problems of thermoelasticity for half-plane also is included. The proposed method of constructing thermoelastic Green’s functions and integral formulas is applicable not only for a half-plane, but also for many other two- and three-dimensional canonical domains of different orthogonal coordinate systems.  相似文献   

19.
The behavior of thermoelastic waves at the interface of layered medium and distributions of these waves through the domain are examined by applying the direct finite element method to obtain the field variables directly within the spatial and temporal domains. The analysis is performed in a one-dimensional domain with two different layers to provide a means to follow the behavior of the reflected thermoelastic waves at the interface. It appears that the distributions of thermoelastic waves in an isotropic slab with one layer are significantly different from those in multilayered slabs. For instance, the negative displacement waves, several stresses with positive or negative signs and temperature distributions produced in the multilayered domains, are quite different from those in a single layer. This method may be generalized to simulate the propagation of thermoelastic waves in various multilayered regions and analyze the behavior of the layered composite structures under the mechanical or thermal impact loads.  相似文献   

20.
层合闭口厚柱壳的温度应力   总被引:2,自引:0,他引:2  
基于层合柱壳混合状态方程和边界条件的弱形式,建立了两端固支层合闭口柱壳的温度应力混合方程,给出了任意厚度合闭口柱壳在温度荷载和机械荷载共同作用下的解析解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号