首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper we prove that each right commutative, right cancellative ordered semigroup (S,.,??) can be embedded into a right cancellative ordered semigroup (T,??,?) such that (T,??) is left simple and right commutative. As a consequence, an ordered semigroup S which is both right commutative and right cancellative is embedded into an ordered semigroup T which is union of pairwise disjoint abelian groups, indexed by a left zero subsemigroup of?T.  相似文献   

2.
We prove that the full C ?-algebra of a second-countable, Hausdorff, étale, amenable groupoid is simple if and only if the groupoid is both topologically principal and minimal. We also show that if G has totally disconnected unit space, then the complex ?-algebra of its inverse semigroup of compact open bisections, as introduced by Steinberg, is simple if and only if G is both effective and minimal.  相似文献   

3.
In this paper, we describe automorphisms of the semigroup G2(R) of nonnegative invertible matrices if R is a (not necessarily commutative) partially ordered ring without zero divisors with 1/n for some natural number n?>?1.  相似文献   

4.
A semigroup S is called a left reductive semigroup if, for all elements a,bS, the assumption “xa=xb for all xS” implies a=b. A congruence α on a semigroup S is called a left reductive congruence if the factor semigroup S/α is left reductive. In this paper we deal with the left reductive congruences on semigroups. Let S be a semigroup and ? a congruence on S. Consider the sequence ? (0)?? (1)???? (n)?? of congruences on S, where ? (0)=? and, for an arbitrary non-negative integer n, ? (n+1) is defined by (a,b)∈? (n+1) if and only if (xa,xb)∈? (n) for all xS. We show that $\bigcup_{i=0}^{\infty}\varrho^{(i)}\subseteq \mathit{lrc}(\varrho )$ for an arbitrary congruence ? on a semigroup S, where lrc(?) denotes the least left reductive congruence on S containing ?. We focuse our attention on congruences ? on semigroups S for which the congruence $\bigcup_{i=0}^{\infty}\varrho^{(i)}$ is left reductive. We prove that, for a congruence ? on a semigroup S, $\bigcup_{i=0}^{\infty}\varrho^{(i)}$ is a left reductive congruence of S if and only if $\bigcup_{i=0}^{\infty}\iota_{(S/\varrho)}^{(i)}$ is a left reductive congruence on the factor semigroup S/? (here ι (S/?) denotes the identity relation on S/?). After proving some other results, we show that if S is a Noetherian semigroup (which means that the lattice of all congruences on S satisfies the ascending chain condition) or a semigroup in which S n =S n+1 is satisfied for some positive integer n then the universal relation on S is the only left reductive congruence on S if and only if S is an ideal extension of a left zero semigroup by a nilpotent semigroup. In particular, S is a commutative Noetherian semigroup in which the universal relation on S is the only left reductive congruence on S if and only if S is a finite commutative nilpotent semigroup.  相似文献   

5.
《代数通讯》2013,41(7):3287-3293
Abstract

For an element a of a group G,let S(a) denote the semigroup generated by all conjugates of a in G. We prove that if G is solvable of finite rank and 1 ? S(a) for all 1 ≠ a ∈ G,then ?a G ?/?b G ? is a periodic group for every b ∈ S(a). Conversely if every two generator subgroup of a finitely generated torsion-free solvable group G has this property then G has finite rank,and if every finitely generated subgroup has this property then every partial order on G can be extended to a total order.  相似文献   

6.
For any commutative semigroup S and any positive integer m, the power function f:SS defined by f(x)=x m is an endomorphism of S. In this paper we characterize finite cyclic semigroups as those finite commutative semigroups whose endomorphisms are power functions. We also prove that if S is a finite commutative semigroup with 1≠0, then every endomorphism of S preserving 1 and 0 is equal to a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. Immediate consequences of the results are, on the one hand, a characterization of commutative rings whose multiplicative endomorphisms are power functions given by Greg Oman in the paper (Semigroup Forum, 86 (2013), 272–278), and on the other hand, a partial solution of Problem 1 posed by Oman in the same paper.  相似文献   

7.
It was shown in [7] that any right reversible, cancellative ordered semigroup can be embedded into an ordered group and as a consequence, it was shown that a commutative ordered semigroup can be embedded into an ordered group if and only if it is cancellative. In this paper we introduce the concept of L-maher and R-maher semigroups and use a technique similar to that used in [7] to show that any left reversible cancellative ordered L or R-maher semigroup can be embedded into an ordered group.  相似文献   

8.
We give characterizations of different classes of ordered semigroups by using intuitionistic fuzzy ideals. We prove that an ordered semigroup is regular if and only if every intuitionistic fuzzy left (respectively, right) ideal of S is idempotent. We also prove that an ordered semigroup S is intraregular if and only if every intuitionistic fuzzy two-sided ideal of S is idempotent. We give further characterizations of regular and intra-regular ordered semigroups in terms of intuitionistic fuzzy left (respectively, right) ideals. In conclusion of this paper we prove that an ordered semigroup S is left weakly regular if and only if every intuitionistic fuzzy left ideal of S is idempotent.  相似文献   

9.
The main result of the paper is a structure theorem concerning the ideal extensions of archimedean ordered semigroups. We prove that an archimedean ordered semigroup which contains an idempotent is an ideal extension of a simple ordered semigroup containing an idempotent by a nil ordered semigroup. Conversely, if an ordered semigroup S is an ideal extension of a simple ordered semigroup by a nil ordered semigroup, then S is archimedean. As a consequence, an ordered semigroup is archimedean and contains an idempotent if and only if it is an ideal extension of a simple ordered semigroup containing an idempotent by a nil ordered semigroup.  相似文献   

10.
In this paper, some characterizations that an ordered semigroup S is a band of weakly r-archimedean ordered subsemigroups of S are given by some relations on S . We prove that an ordered semigroup S is a band of weakly r -archimedean ordered subsemigroups if and only if S is regular band of weakly r -archimedean ordered subsemigroups. Finally, we obtain that a negative ordered semigroup S is a band of weakly r-archimedean ordered subsemigroups of S if and only if S is a band of r-archimedean ordered subsemigroups of S . As an application the corresponding results on semigroups without order can be obtained by moderate modifications. August 27, 1999  相似文献   

11.
We study the decomposition of left regular ordered semigroups into left regular components and the decomposition of intra-regular ordered semigroups into simple or intra-regular components, adding some additional information to the results considered in [KEHAYOPULU, N.: On left regular ordered semigroups, Math. Japon. 35 (1990), 1057–1060] and [KEHAYOPULU, N.: On intra-regular ordered semigroups, Semigroup Forum 46 (1993), 271–278]. We prove that an ordered semigroup S is left regular if and only if it is a semilattice (or a complete semilattice) of left regular semigroups, equivalently, it is a union of left regular subsemigroups of S. Moreover, S is left regular if and only if it is a union of pairwise disjoint left regular subsemigroups of S. The right analog also holds. The same result is true if we replace the words “left regular” by “intraregular”. Moreover, an ordered semigroup is intra-regular if and only if it is a semilattice (or a complete semilattice) of simple semigroups. On the other hand, if an ordered semigroup is a semilattice (or a complete semilattice) of left simple semigroups, then it is left regular, but the converse statement does not hold in general. Illustrative examples are given.  相似文献   

12.
It is shown that if a second countable locally compact group G acts nonsingularly on an analytic measure space (S, μ), then there is a Borel subset E ? S such that EG is conull in S and each sGE is countable. It follows that the measure groupoid constructed from the equivalence relation ssg on E may be simply described in terms of the measure groupoid made from the action of some countable group. Some simplifications are made in Mackey's theory of measure groupoids. A natural notion of “approximate finiteness” (AF) is introduced for nonsingular actions of G, and results are developed parallel to those for countable groups; several classes of examples arising naturally are shown to be AF. Results on “skew product” group actions are obtained, generalizing the countable case, and partially answering a question of Mackey. We also show that a group-measure space factor obtained from a continuous group action is isomorphic (as a von Neumann algebra) to one obtained from a discrete group action.  相似文献   

13.
The derivation problem for a locally compact group G asserts that each bounded derivation from L 1(G) to L 1(G) is implemented by an element of M(G). Recently a simple proof of this result was announced. We show that basically the same argument with some extra manipulations with idempotents solves the module derivation problem for inverse semigroups, asserting that for an inverse semigroup S with set of idempotents E and maximal group homomorphic image G S , if E acts on S trivially from the left and by multiplication from the right, any bounded module derivation from ? 1(S) to ? 1(G S ) is inner.  相似文献   

14.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

15.
Central subsets of a discrete semigroup S have very strong combinatorial properties which are a consequence of the Central Sets Theorem . We investigate here the class of semigroups that have a subset with zero Følner density which satisfies the conclusion of the Central Sets Theorem. We show that this class includes any direct sum of countably many finite abelian groups as well as any subsemigroup of (?,+) which contains ?. We also show that if S and T are in this class and either both are left cancellative or T has a left identity, then S×T is in this class. We also extend a theorem proved in (Beiglböck et al. in Topology Appl., to appear), which states that, if p is an idempotent in β? whose members have positive density, then every member of p satisfies the Central Sets Theorem. We show that this holds for all commutative semigroups. Finally, we provide a simple elementary proof of the fact that any commutative semigroup satisfies the Strong Følner Condition.  相似文献   

16.
A semigroup S is called a weakly commutative semigroup if, for every a,bS, there is a positive integer n such that (ab) n SabS. A semigroup S is called archimedean if, for every a,bS, there are positive integers m and n such that a n SbS and b m SaS. It is known that every weakly commutative semigroup is a semilattice of weakly commutative archimedean semigroups. A semigroup S is called a weakly separative semigroup if, for every a,bS, the assumption a 2=ab=b 2 implies a=b. In this paper we show that a weakly commutative semigroup is weakly separative if and only if its archimedean components are weakly cancellative. This result is a generalization of Theorem 4.16 of Clifford and Preston (The Algebraic Theory of Semigroups, Am. Math. Soc., Providence, 1961).  相似文献   

17.
An ordered semigroup S is called CS-indecomposable if the set S × S is the only complete semilattice congruence on S. In the present paper we prove that each ordered semigroup is, uniquely, a complete semilattice of CS-indecomposable semigroups, which means that it can be decomposed into CS-indecomposable components in a unique way. Furthermore, the CS-indecomposable ordered semigroups are exactly the ordered semigroups that do not contain proper filters. Bibliography: 6 titles. Published in Zapiski Nauchnykh Seminarov POMI, Vol. 343, 2007, pp. 222–232.  相似文献   

18.
A finite group G is called a Schur group, if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. Recently, the authors have completely identified the cyclic Schur groups. In this article, it is shown that any abelian Schur group belongs to one of several explicitly given families only. In particular, any noncyclic abelian Schur group of odd order is isomorphic to ?3 × ?3 k or ?3 × ?3 × ? p where k ≥ 1 and p is a prime. In addition, we prove that ?2 × ?2 × ? p is a Schur group for every prime p.  相似文献   

19.
We associate a graph G ?(P) to a partially ordered set (poset, briefly) with the least element?0, as an undirected graph with vertex set P ?=P?{0} and, for two distinct vertices x and y, x is adjacent to?y in?G ?(P) if and only if {x,y} ? ={0}, where, for a subset?S of?P, S ? is the set of all elements xP with xs for all sS. We study some basic properties of?G ?(P). Also, we completely investigate the planarity of?G ?(P).  相似文献   

20.
We consider actions G?×?X?→?X of the affine, algebraic group G on the irreducible, affine, variety X. If [k[X] G ]?=?[k[X]] G we call the action visible. Here [A] denotes the quotient field of the integral domain A. If the action is not visible we construct a G-invariant, birational morphism φ: Z?→?X such that G?×?Z?→?Z is a visible action. We use this to obtain visible open subsets U of X. We also discuss visibility in the presence of other desirable properties: What if G?×?X?→?X is stable? What if there is a semi-invariant fk[X] such that G?×?X f ?→?X f is visible? What if X is locally factorial? What if G is reductive?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号