首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-phase partitioning bioreactor to treat gas effluents polluted by volatile organic compound has been developed. In this work, both the mass transfer of isopropylbenzene (IPB) and oxygen have been considered in relation to their influence on the hydrodynamics of the reactor and the type of silicone oils used as a second phase. The synergistic effect of silicone oil and stirrer speed on the global oxygen mass transfer coefficient (K L a) and gas holdup (up to 12%) have been investigated. The addition of 10% of low viscosity silicone oil (10 cSt) in the reactor does not significantly affect the oxygen transfer rate. The very high solubility of IPB in the silicone oil leads to an enhancement of driving force term, especially for high fraction of silicone oil. However, it does not seem useful to exceed a volume fraction of 10% since K L a IPB decreases sharply at higher proportions of silicone oil. K L a IPB and K L a O2 evolve in the same way with the proportion of silicone oil. These results confirm the potentialities of our bioreactor to improve both the oxygen and pollutant gas transfer in the field of the treatment of gaseous pollutants, even for highly concentrated effluents.  相似文献   

2.
Since cultivations of Arthrospira platensis have a high water demand, it is necessary to develop treatment methods for reusing the exhausted medium that may prevent environmental problems and obtaining useful biomass. The exhausted Schlösser medium obtained from A. platensis batch cultivation in bench-scale mini-tanks was treated by varying concentrations of different coagulants, ferric chloride (6, 10, and 14 mg L?1) or ferric sulfate (15, 25, and 35 mg L?1) and powdered activated carbon (PAC, 30 and 50 mg L?1). Such treated effluent was restored with NaNO3 and reused in new cultivations of A. platensis performed in Erlenmeyer flasks. Reusing media through the cultivation of A. platensis showed satisfactory results, particularly in the medium treated with ferric chloride and PAC. The maximum cell concentration obtained in the flasks was 1093 mg L?1, which corresponded to the medium treated with ferric chloride (6 mg L?1) and PAC (30 mg L?1). This cellular growth was higher than in the medium treated with ferric sulfate and PAC, in which values of maximum cell concentration did not exceed 796 mg L?1. The cultures in the media after treatment did not modify the biomass composition. Thus, combined coagulation/adsorption processes, commonly used in water treatment processes, can be efficient and viable for treating exhausted medium of A. platensis, allowing the production of such biomass with the reduction of production cost and saving water.  相似文献   

3.
Botryococcus braunii is a microalga that is regarded as a potential source of renewable fuel because of its ability to produce large amounts of lipid that can be converted into biodiesel. Agro-industrial by-products and wastes are of great interest as cultivation medium for microorganisms because of their low cost, renewable nature, and abundance. In this study, two strategies for low-cost production of B. braunii biomass with high lipid content were performed: (i) the mixotrophic cultivation using molasses, a cheap by-product from the sugar cane plant as a carbon source, and (ii) the photoautotrophic cultivation using nitrate-rich wastewater supplemented with CO2 as a carbon source. The mixotrophic cultivation added with 15 g L?1 molasses produced a high amount of biomass of 3.05 g L?1 with a high lipid content of 36.9 %. The photoautotrophic cultivation in nitrate-rich wastewater supplemented with 2.0 % CO2 produced a biomass of 2.26 g L?1 and a lipid content of 30.3 %. The benefits of this photoautotrophic cultivation are that this cultivation would help to reduce accumulation of atmospheric carbon dioxide and more than 90 % of the nitrate could be removed from the wastewater. When this cultivation was scaled up in a stirred tank photobioreactor and run with semi-continuous cultivation regime, the highest microalgal biomass of 5.16 g L?1 with a comparable lipid content of 32.2 % was achieved. These two strategies could be promising ways for producing cheap lipid-rich microalgal biomass that can be used as biofuel feedstocks and animal feeds.  相似文献   

4.
Distribution coefficients (K d), apparent diffusion coefficients (D a) and retardation factor (Rf) in this work obtained by batch and through-diffusion experiments have been performed, respectively. The accumulative concentration method developed by Crank (The mathematics of diffusion, 12) was applied to realize apparent and effective diffusion coefficient (D a and D e) of Se. Besides, a non-reactive radionuclide, HTO, was initially conducted in through-diffusion experiment for assessing the ability of radionuclide retardation. The distribution coefficients (K d) obtained by batch tests in 14 days under aerobic and anaerobic systems were 6.98 ± 0.35 and 5.21 ± 0.25 mL/g. Moreover, Rfcal and K d cal of Se obtained from accumulative concentration’s method in through-diffusion test showed an obvious discrepancy with the increase of length/diameter (L/D) ratio. However, it presented an agreement of RfH/Se and K d H/Se in a various L/D ratio by comparison of apparent diffusion coefficient’s (D a) between HTO and Se. It appears that the RfH/Se and K d H/Se obtained from the through-diffusion experiments are lower than those derived from the batch experiments. Therefore, it demonstrates that reliable Rf and K d of Se by through-diffusion experiments could be achieved at a non-reactive radiotracer (HTO) prior to tests and will be more confident in long-term performance assessment of disposal repository.  相似文献   

5.
Allergenic extracts were produced from Drechslera (Helminthosporium) monoceras biomass cultured by solid-state fermentation using wheat bran as the substrate. The main fermentation variables were selected by statistical design, and the optimized biomass yield (1.43 mg/[g of dry substrate · d]) was obtained at pH 9.5 and 45.8% moisture. The allergenic extracts were produced from crude extract by protein precipitation and polyphenol removal. Proteins in the range of 16–160 kDa were identified in the extracts. Their reactions in patients were characterized by in vivo cutaneous tests (positive in 40% of the atopic patients) and by dot-blotting assays.  相似文献   

6.
The reactions between [Ni(O2CR)(triphos)]+ (R = Et or Ph, triphos = PhP(CH2CH2PPh2)2) and mixtures of lutH+ and lut (lut = 2,6-dimethylpyridine) have been studied in MeCN at 25.0 °C using stopped-flow spectrophotometry. The kinetics and spectroscopic changes indicate an equilibrium reaction, presumably involving protonation of an oxygen site (the only sites on the complex containing lone pairs of electrons). Proton transfer is slow and comparison of the kinetic data shows that the rates are insensitive to the R substituent. Using the kinetic data, the pKas of [Ni(HO2CR)(triphos)]2+ (pKa = 14.5) have been calculated showing that when coordinated to the {Ni(triphos)}2+ site, RCO2H is about 8 pKa units more acidic than the free acid. Comparison of the kinetic results on the reactions of [Ni(O2CR)(triphos)]+ with mixtures of lutH+ and lut and those of the analogous [Ni(S2CR)(triphos)]+ show that protonation at oxygen is at least 7.6 × 103 times faster than to sulfur, and the coordinated carboxylic acid is ca. 8 pKa units less acidic than the corresponding coordinated carboxydithioic acid.  相似文献   

7.
The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O2 in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20–100% (v/v) O2 in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O2 in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3–2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1–4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).  相似文献   

8.
Spectrophotometric and calorimetric titrations were used to determine the equilibrium constants (log10 K 111) and enthalpies of formation (ΔH 111) for aqueous ternary complexes of the form M(La)(Lb) (M = Nd3+, Sm3+, Tb3+, Ho3+, Er3+, or Am3+; La = DTPA5?, DO3A3?, or CDTA4?; Lb = oxalate (Ox), malonate (Mal), or iminodiacetate (IDA)). Inner-sphere ternary complexes were readily formed with the septadentate DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid) and hexadentate CDTA (trans-1,2-diaminocyclohexanetetraacetic acid) ligands, whose binary complexes have residual metal-coordinated water molecules that are readily displaced by the smaller secondary ligands. The stability constants for the formation of lanthanide–CDTA complexes with Ox, Mal, and IDA generally increase with decreasing ionic radius when steric hindrance is minimal, with the trend in the M(CDTA)? formation constants overshadowing any size-based reversal in the stepwise ternary complexation constants. Similar ternary complexes with DO3A showed little increase in thermodynamic stability compared to analogous CDTA complexes and no preference for larger Ln cations. The octadentate DTPA (diethylenetriaminepentaacetic acid) ligand proved too large to form ternary complexes to a measurable extent with any of the secondary ligands investigated, despite the presence of one residual inner sphere water molecule.  相似文献   

9.
Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L?1 after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05?±?0.35 g L?1), lipid productivity (0.82?±?0.14 g L?1), and C16–C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.  相似文献   

10.
The Schiff base ligands N,N′-(±)-trans-bis(3,5-dichloro-2-hydroxyacetophenone)-1,2-cyclohexanediamine (H2L1) and N,N′-(±)-trans-bis(5-chloro-4-methyl-2-hydroxyacetophenone)-1,2-cyclohexanediamine (H2L2) were derived from the condensation of trans-1,2-diaminocyclohexane with 3,5-dichloro-2-hydroxyacetophenone or 5-chloro-4-methyl-2-hydroxyacetophenone, respectively. Both these ligands formed well-defined complexes with vanadium (IV) and (V) under suitable experimental conditions. These complexes have been characterized by elemental analysis, molar conductivity, magnetic moments, infrared, electronic spectra, ESR, X-ray diffraction, and thermogravimetric analysis. X-ray diffraction study of [VO(L2)]·H2O complex indicated its monoclinic crystal system with a = 9.8525, b = 23.6271, c = 9.0904 Å, and β = 97.87°. The complexes [VO(L1)]·H2O and [VO(L2)]·H2O have been examined as catalysts for epoxidation of styrene in the presence of hydrogen peroxide as oxidant. The IR spectral data suggest that both the ligands behave as dibasic tetradentate chelating agent with ONNO donor atoms sequence toward cental metal ion.  相似文献   

11.
In this study, the solid-state reaction mechanism and kinetics were investigated for production of anhydrous sodium metaborate (NaBO2), an industrially and technologically important boron compound. To assess the kinetics of solid-state production of NaBO2, the chemical reaction between borax (Na2B4O7) and sodium hydroxide (NaOH) was investigated by use of the thermal analysis techniques thermogravimetry (TG) and differential thermal analysis (DTA). DTA curves obtained under non-isothermal conditions at different heating rates (5, 10 and 20 °C/min), revealed five endothermic peaks corresponding to five solid-state reactions occurring at 70, 130, 295, 463, and 595 °C. The stages of the solid-state reaction used for production NaBO2 were also analyzed by XRD, which showed that at 70 and 130 °C, Na2B4O7 and NaOH particles contacted between the grains, and diffusion was initiated at the interface. However, there was not yet any observable formation of NaBO2. Formation of NaBO2 was initiated and sustained from 295 to 463 °C, and then completed at 595 °C; the product was anhydrous NaBO2. Activation energies (E a) of the solid-state reactions were calculated from the weight loss based on the Arrhenius model; it was found that in the initial stages of the solid-state reaction E a values were lower than in the last three steps.  相似文献   

12.
A new N-containing ligand, 1,4,7,10-tetra-(4-nitrobenzyl)-1,4,7,10-tetraazacyclo-dodecane (L), was synthesized, and its structure was determined by 1H NMR, high resolution mass spectrometry and X-ray diffraction. L crystallized in the monoclinic system (P21/n space group; a = 7.7895(2) Å, b = 22.9592(5) Å, c = 9.9204(2) Å; α = 90.00°, β = 105.481(3)°, γ = 90.00°; Z = 2). Slope analysis and the continuous variation method demonstrated that 1:2 complexes between Th(IV) and L are formed; furthermore, the XPS analysis suggested that two oxygen atoms might be provided by two water molecules and that eight nitrogen atoms might be provided by two L molecules to form a ten-coordinate compound with Th(IV). The extraction equilibrium constant for the complex formation between Th(IV) and L was logK ex = 6.95 ± 0.15 (25 °C), and the Gibbs free energy, ΔG o (25 °C), of the 1:2 Th–L complex in dichloromethane was ?39.56 kJ/mol. The L ligand in dichloromethane only slightly extracted Th(IV) from HNO3 solution at pH = 1–3; however, an extraction efficiency of E = 94.9 ± 0.3 % was observed at pH = 4.63. The selectivity of L for the Th(IV) cation over other cations (i.e., Cs(I), Sr(II), Y(III), La(III), Sm(III), Eu(III), U(VI), and 241Am(III)) was evaluated. Furthermore, the stripping experiments showed that the stripping agent (0.5 mol/L Na2CO3 + 0.1 mol/L EDTA) could provide an optimal condition for stripping thorium, and thorium recovery was up to 91.6 ± 0.1 %.  相似文献   

13.
Synechococcus PCC 7002 is an interesting species in view of industrial production of carbohydrates. The cultivation performances of this species are strongly affected by the pH of the medium, which also influences the carbohydrate accumulation. In this work, different methods of pH control were analyzed, in order to obtain a higher production of both Synechococcus biomass and carbohydrates. To better understand the influence of pH on growth and carbohydrate productivity, manual and automatic pH regulation in CO2 and bicarbonate system were applied. The pH value of 8.5 resulted the best to achieve both of these goals. From an industrial point of view, an alternative way to maintain the pH practically constant during the entire period of cultivation is the exploitation of the bicarbonate-CO2 buffer system, with the double aim to maintain the pH in the viability range and also to provide the amount of carbon required by growth. In this condition, a high concentration of biomass (6 g L?1) and carbohydrate content (around 60 %) were obtained, which are promising in view of a potential use for bioethanol production. The chemical equilibrium of C-N-P species was also evaluated by applying the ionic balance equations, and a relation between the sodium bicarbonate added in the medium and the equilibrium value of pH was discussed.  相似文献   

14.
The paper deals with the exploitation of Ipomoea carnea as a feedstock for the production of bioethanol. Dilute acid pretreatment under optimum conditions (3 %H2SO4, 120 °C for 45 min) produced 17.68 g L?1 sugars along with 1.02 g L?1 phenolics and 1.13 g L?1 furans. A combination of overliming and activated charcoal adsorption facilitated the removal of 91.9 % furans and 94.7 % phenolics from acid hydrolysate. The pretreated biomass was further treated with a mixture of sodium sulphite and sodium chlorite and, a maximum lignin removal of 81.6 % was achieved. The enzymatic saccharification of delignified biomass resulted in 79.4 % saccharification with a corresponding sugar yield of 753.21 mg g?1. Equal volume of enzymatic hydrolysate and acid hydrolysate were mixed and used for fermentation with a hybrid yeast strain RPRT90. Fermentation of mixed detoxified hydrolysate at 30 °C for 28 h produced ethanol with a yield of 0.461 g g?1. A comparable ethanol yield (0.414 g g?1) was achieved using a mixture of enzymatic hydrolysate and undetoxified acid hydrolysate. Thus, I. carnea biomass has been demonstrated to be a potential feedstock for bioethanol production, and the use of hybrid yeast may pave the way to produce bioethanol from this biomass.  相似文献   

15.
In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard “k-ε” Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie’s penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).  相似文献   

16.
Reaction of thiosemicarbazones of salicylaldehyde and 2-hydroxyacetophenone (H2L1 and H2L2) with [Ir(PPh3)3Cl] affords complexes of type [Ir(PPh3)2(L)(H)] (L = L1 or L2) in ethanol. A similar reaction carried out in toluene affords the [Ir(PPh3)2(L)(H)] complexes along with complexes of type [Ir(PPh3)2(L)Cl], where a chloride is coordinated to iridium instead of the hydride. The structure of the [Ir(PPh3)2(L2)(H)] and [Ir(PPh3)2(L2)Cl] complexes has been determined by X-ray crystallography. Crystal data for [Ir(PPh3)2(L2)(H)]: space group, P21/c; crystal system, monoclinic; a=12.110(2) Å, b=17.983(4) Å, c=18.437(4) Å, β=103.42(3)°, Z=4; R 1=0.0591, wR 2=0.1107. Crystal data for [Ir(PPh3)2(L2)Cl]: space group, P21/c; crystal system, monoclinic; a=17.9374(11) Å, b=19.2570(10) Å, c=24.9135(16) Å, β=108.145(5)°, Z=4; R 1=0.0463, wR 2=0.0901. In all the complexes the thiosemicarbazones are coordinated to the metal center as dianionic tridentate O, N, S-donors and the two triphenylphosphines are trans. The complexes are diamagnetic (low-spin d? 6, S=0) and show intense MLCT transitions in the visible region. Cyclic voltammetry on all the [Ir(PPh3)2(L)(H)] and [Ir(PPh3)2(L)Cl] complexes shows a quasi-reversible Ir(III)–Ir(IV) oxidation within 0.55–0.78 V vs. SCE followed by an irreversible oxidation of the thiosemicarbazone within 0.91–1.27 V vs. SCE. An irreversible reduction of the thiosemicarbazone is also observed within ?1.10 to ?1.23 V vs. SCE.  相似文献   

17.
The aim of the present study was to develop a fast, sensitive and reliable method for rapid screening of cephalosporin injectable dosage forms namely ceftazidime and ceftizoxime to the detection of counterfeit and substandard drugs that might be illegally commercialized. Ceftazidime, ceftizoxime and cefixime (IS) were separated in a X-Terra RP-18 column (250 × 4.60 mm ID × 5 ??) and DAD detector set at 290 and 260 nm. The mobile phase consisted of a mixture of methanol:water 20:80 (v/v) at a flow rate of 1.0 mL min?1. Additionally, in order to find the optimum pH value of separation the pK a values of studied compounds were determined by using two different methodologies. Aqueous pK a values of studied compounds have been determined by UV-spectrophotometry and liquid chromatography were used for the determination and direct characterization of the dissociation constants by using the dependence of the capacity factor on the pH of the mobile phase in 20% (v/v) methanol?Cwater binary mixture in which separation was performed. The pH of the mobile phase was adjusted with 25 mM H3PO4 to 3.2. The method was shown to be linear, sensible, accurate, and reproducible over the range of analysis and it can be used to pharmaceutical formulations containing a single active ingredient within a short analysis time.  相似文献   

18.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

19.
Biosurfactant produced from Pseudomonas aeruginosa DSVP20 was evaluated for its potential to disrupt Candida albicans biofilm formed on polystyrene (PS) surfaces in this investigation. P. aeruginosa DSVP20 exhibited optimum production of biosurfactant (5.8 g?L?1) after 96 h of growth with an ability to reduce surface tension of the aqueous solution from 72 to 28 mN?m?1. Analysis of purified biosurfactant with FT-IR, 1H and 13C NMR and MALDI-TOF MS revealed it to be di-rhamnolipid (RL-2) in nature. Biofilm disrupting ability of RL-2 (0.16 mg?mL?1) on Candida cells when checked using XTT reduction assay revealed that about 50 % of the cells remain adhered to 96-well plate after 2 h of treatment, while up to 90 % reduction in pre-formed C. albicans biofilm on PS surface was observed with RL-2 (5.0 mg?mL?1) in a dose-dependent manner. Microscopic analyses (SEM and CLSM) further confirm the influence of RL-2 on disruption of Candida biofilm extracellular matrix on PS surface which can be exploited as a potential alternative to the available conventional therapies.  相似文献   

20.
Thermogravimetric analysis of co-combustion of biomass and biochar   总被引:4,自引:0,他引:4  
The co-combustion of biomass and biochar was investigated by thermogravimetric analysis. Several thermal parameters and mean reactivity index (R M) for different blends were used to evaluate co-combustion features. As the biomass content increased from 30 to 90 mass%, volatile releasing temperature (T v), burnout temperature (T b), and the temperature at the maximal peak (T max) generally reduced, while average mass loss rates (R a) and R M increased, the maximum mass loss rate (R max) initially decreased and then increased. Results showed that biochar additions enhanced biomass fuel reactivity over weighted average in main combustion region. Besides, blends with 10–30 mass% of biochar behaved better than those with higher biochar ratio. Synergy exists between the two components and better combustibility is feasible by co-firing biochar with biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号