首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Sisal (Agave sisalana) fiber was extracted by manual process. These fibers were subjected to surface coating with conducting polyaniline, through in situ oxidative polymerization. The polyaniline modified sisal fibers were characterized by thermal, spectroscopic and microscopic techniques. It was shown that the fiber was coated with polyaniline through in situ oxidative polymerization and the latter had a smoothing effect on the surface as compared to uncoated sisal fiber. Besides, it was confirmed that polyaniline was deposited in conductive form of emeraldine salt. This in turn verified the introduction of active functionalities to the system, which is helpful to tune up surface chemistry of polyaniline for water treatment applications.  相似文献   

2.
In the present work new conductive nanostructures based on poly (acrylamide-co-maleic acid) (PAAMA) and polyaniline were prepared. The template polymerization of aniline was conducted in the aqueous solution of PAAMA with different ratios (w/w%) of aniline to polyacid. The prepared composite was characterized by FTIR and UV–Vis spectroscopy, SEM, electrical conductivity measurements and solubility tests.  相似文献   

3.
The plasma polymerization of aniline on different surface functionlized low-density polyethylene (LDPE) substrates was investigated, and the resulting polymer was characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The results showed that the structure of plasma-polymerized polyaniline was rather different from polyaniline synthesized by conventional chemical and electrochemical methods. This difference may be due to extensive coupling reactions and cross-linking reactions during the plasma polymerization process. The use of acrylic acid graft copolymerized LDPE substrate significantly enhanced the adhesion of the polyaniline to the substrate over that observed with pristine LDPE. The plasma polymerized polyaniline can be rendered electrically conductive if the polymerization is carried out on a polystyrenesulfonic acid-coated LDPE substrate. Conductivity can also be induced by acid protonation of the polyaniline by HClO(4). The reaction of the plasma-polymerized polyaniline with viologen grafted on the substrate under UV irradiation and with AuCl(3) and Pd(NO(3))(2) in acid solutions was also investigated.  相似文献   

4.
In this study, the surface-initiated atom transfer radical polymerization (SI-ATRP) technique and electroless deposition of silver (Ag) were used to prepare a novel multi-functional cotton (Cotton-Ag), possessing both conductive and antibacterial behaviors. It was found that the optimal electroless deposition time was 20 min for a weight gain of 40.4%. The physical and chemical properties of Cotton-Ag were investigated. It was found that Cotton-Ag was conductive and showed much lower electrical resistance, compared to the pristine cotton. The antibacterial properties of Cotton-Ag were also explored, and high antibacterial activity against both Escherichia coli and Staphylococcus aureus was observed.  相似文献   

5.
Electrically conducting polystyrene (PS)/polyaniline blends have been prepared through a one-step “anilinium-surfactant template”-assisted emulsion polymerization at room temperature. The self-assembled cylindrical An+PDPSA? micelle formed inside the PS matrix can act as a structure directing template cum dopant. Morphological observation under scanning electron microscopic studies revealed that during the progress of polymerization, the initially formed nanostructured conducting polyaniline was changed into cubic/hexagonal/lamellar particles and finally transformed into a percolated structure inside the PS matrix. Blend was further characterized by UV-Vis spectroscopy, FTIR spectroscopy, X-ray diffraction, electrical conductivity, thermal stability, dielectric property, rheological property, and electromagnetic shielding efficiency. The key finding of this work is that the conductive blend prepared through micelle-guided polymerization exhibited superior electrical conductivity (9.6 S/m) with low percolation threshold concentration (5 wt%), excellent thermal stability, electromagnetic interference (EMI) SE of 1–10 dB which makes it a promising candidate for EMI shielding and antistatic discharge matrix for the encapsulation of microelectronic devices.  相似文献   

6.
Synthesis and characterization of polyaniline‐grafted poly(styrene‐alt‐maleic anhydride) (PANI‐g‐PSMA) was carried out to obtain conductive comb copolymers with highly improved processability. First, polyaniline (PANI) was prepared in nano‐scale by chemical synthesis under ultrasonic irradiation. Then the poly(styrene‐alt‐maleic anhydride) (PSMA) was synthesized by free radical polymerization. Moreover, the PANI was grafted on the PSMA backbone to prepare a comb‐like conductive copolymer for improving its processability as a new method. The products were characterized by Fourier transform infrared, ultraviolet–visible spectroscopy and X‐ray diffraction patterns. Morphology of the samples was also investigated by scanning electron microscopy images. Finally, the solubility and conductivity of the products were studied, and it resulted in high solubility of the products in water and other common organic solvents in comparison to the pure PANI. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
NSG01 industrial atomic force microscope probes were functionalized by the electrically conductive polymer, polyaniline, during in situ oxidative polymerization of aniline at the probe point, which was confirmed by scanning electron microscopy. The quality of the deposited polymer can be controlled by measuring the resonance frequency of the gauge during functionalization. The comparative test of the probes prior to and after functionalization was performed using a TGT01 calibration grate, as well as on a special polyaniline test layer with a complex nanosized morphology in the semicontact mode of surface relief study and the phase contrast mode. Local current spectroscopy showed that the functionalized probe can be converted repeatedly from the conducting to nonconducting state owing to a reversible change in the conductivity of the polymer coating.  相似文献   

8.
This study reports on the benefits of an in situ interfacial dynamic inverse emulsion polymerization process under sonication of aniline in the presence of a commercial reverse osmosis (RO) membrane. This polymerization method is simple and much faster (5‐15 min) than systems reported in the literature. During polymerization, the membranes are coated with polyaniline (PANI) as verified by high‐resolution scanning electron microscopy (HRSEM) images and Fourier‐transform‐infrared (FTIR) measurements. A colony‐counting antimicrobial activity test showed that whereas the reference RO membrane developed a large bacterial colony, the polyaniline‐coated RO membrane had no colonies at all. Surface resistivity was the lowest when the pH levels were below 6, which corresponded to the polyaniline‐grafted conductive layer. The membrane flow properties were only modified slightly as a result of the polyaniline grafting, compared with a pristine reference membrane.  相似文献   

9.
An effective and simple method was developed to prepare highly conductive polyaniline by coagulation polymerization. Depending on the coagulation reaction between aniline salts and lauryl sulfonate (SDS), not only was the polymerization rate of aniline monomers greatly decreased but also the doping efficiency of hydrochloric acid was effectively increased. Low polymerization rate provided enough time for the conformation adjustment of polyaniline chains and the diffusion of doping agent. Meanwhile, the doping efficiency of hydrochloric acid on polyaniline chains was effectively increased due to its easy diffusion among many vacancies, which were generated when SDS separated in the process of polymerization. Therefore, the electrical conductivity of polyaniline prepared by coagulation polymerization was increased more than ten times than that of polyaniline, which was prepared by conventional methods. In addition, the important factors to influence the preparation, such as SDS concentration, hydrochloride acid (HCl) concentration, content of ammonium persulfate (APS), and polymerization time were also investigated. When the molar ratio (aniline:SDS:HCl :APS) was set to 1.69:0.46:15.38:1, the conductivity of polyaniline reached 24.39 S/cm.  相似文献   

10.
Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.  相似文献   

11.
Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 °C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 °C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity.  相似文献   

12.
研究了原位聚合法制备聚酰胺/聚苯胺导电纤维,并对制备的复合纤维进行红外及光学显微镜测试,结果表明聚苯胺与纤维成功复合。对制备的复合纤维进行电导率测试,采用控制单一变量法探讨了苯胺单体在不同的条件下聚合对纤维电导率的影响,并讨论了反应温度对聚合过程和电导率的影响,得出最佳的工艺条件为:纤维经30%的甲酸溶液预处理20min,苯胺单体浓度为0.8M,氧化剂过硫酸铵浓度为1M,掺杂酸为盐酸,浓度为0.8M,冰水浴条件,反应时间为4h,得到的聚酰胺/聚苯胺导电纤维的电导率为3.7S/m。  相似文献   

13.
Synthesis of polyaniline (PANI) catalyzed by soybean peroxidase at 1 °C in either aqueous or partially organic media, was studied as a function of pH and reaction media. Kinetic studies indicated that, unlike chemical polymerization, enzymatic polymerization of aniline showed neither induction period nor auto acceleration. The redox reversibility and chemical structure of the synthesized PANI was strongly dependent on the starting pH of the reaction medium. UV-vis, FT-IR, WAXD and TGA analysis are used to explain how the enzymatic reaction conditions influence both the chemical structure and physical properties of the PANI. Optimal reaction conditions are outlined for the direct enzymatic synthesis of electrically conductive emeraldine salt with yield as high as 71%.  相似文献   

14.
Earlier stages of aniline polymerization have been studied by Fourier transform electrochemical impedance spectroscopy (FTEIS) experiments. Initial oxidation of aniline leads to the formation of a thin layer passivating the electrode surface, which is depassivated upon a further increase in potential and mediates a further electron transfer from aniline to the electrode. The charge-transfer resistance was first shown to decrease upon increasing the potential, which leads to the inductive behavior upon further increase in the overpotential. The oligomer-polymer film thus formed was shown to undergo a transition from its passive state to neutral oligomer-polymer molecules via a conducting state; its oxidation was then observed during the anodic scan. It is this transition to the conductive states that leads to the propagation of the conductive zone throughout the nonconductive film, leading to further growth of polyaniline, as was clearly shown by the FTEIS measurements.  相似文献   

15.
Method for deposition of layers of the organic semiconductor polyaniline onto various kinds of supports was developed. The method enables control over the layer thickness and morphology. It is based on formation of a polymeric layer on the support in the course of a heterophase in situ polymerization of aniline. Processes of self-organization of polymer chains on a support and their dependence on the in situ polymerization conditions were studied. Characteristics of polyaniline layers of varied morphology on different kinds of supports were analyzed by electron microscopy, spectroscopy, and conductometry.  相似文献   

16.
In this paper we report on the synthesis of a polyaniline-graft-poly(2-hydroxy ethyl metacrylate), which was obtained by atom-transfer radical polymerization of 2-hydroxy ethyl metacrylate using polyaniline as a macroinitiator. The latter was prepared by chemical oxidation (interfacial method) and further modification. Macroinitiator and graft copolymer were characterized by FTIR and 1H NMR spectroscopy. The scanning electron microscopy and atomic force microscopy images showed the growing of poly(2-hydroxy ethyl metacrylate) chains on polyaniline backbone. The solubility test revealed that the polyaniline-graft-poly(2-hydroxyethyl metacrylate) copolymer is water soluble and some organic solvents soluble. The cyclic voltammetry study confirmed the electroactivity of the copolymer.  相似文献   

17.
Single crystalline nanoneedles of three families of the most studied conductive organic polymers - polythiophene, polyaniline and polypyrrole - were synthesized for the first time using an interfacial polymerization process that takes place with simultaneous crystallization. As the crystal growth is concurrent with polymerization, more ordered crystal packing can be expected. Most of the bulk conducting-polymer systems studied contains regions that are inhomogeneous. Single nanocrystals of conducting polymers have not been reported, although needle-shaped bulk crystals of the quarterphenyl cation radical salt have previously been studied. The investigation of processes in a nanodomain of a single crystal is critical in ascertaining the inherent electronic properties of polymer nanoelements. The organic conductive nanoneedles were characterized using TEM, HRTEM, electron diffraction, EDS, and EPR to establish their crystal structure and composition. Scanning tunneling microscopy/spectroscopy (STM/STS) investigation were conducted to examine their electronic behaviors, leading to the discovery of a field-induced conductance switching with response times on the millisecond level. The switch voltages are in the range of 3 to 4 volts in STM experiments, consistent with the trend of the band gap of the three polymers. The organic conductive nanoneedles with nano-tip having high density of mobile electron may serve as interesting elements for nanoscale electronics.  相似文献   

18.
Composite of conductive polyaniline-isobutylated urea formaldehyde have been prepared by chemical oxidative emulsion polymerization of aniline in the presence of isobutylated urea formaldehyde resin (BUFR) in toluene-water solvents at room temperature. The mass loading of polyaniline was controlled by varying the BUFR/aniline charging ratio as well as oxidant (ammonium persulfate)/aniline molar ratio. Some factors capable of affecting the yield and conductivity of composite, such as amount of the oxidant, type of the dispersants (span-80 and span-20), and amount of resin and organic acid (para-toluene sulfonic acid) were investigated. The prepared composites were characterized by FTIR spectroscopy and scanning electron microscopy (SEM).  相似文献   

19.
Preparation method of polyaniline/montmorillonite (PANI/MMT) nanocomposite in the form of thin layer deposited on various substrates is optimized in this work to obtain high electrical conductivity. Simple method (i.e. polymerization of anilinium sulfate in the presence of MMT) has been used for the preparation and following four conditions were varied: preparation temperature (T = 10 or 20 °C), preparation time (t = 4 or 6 h), size fraction of MMT (p < 1 or 5 µm), and type of substrate (microscope glass slides, silica glass slides, polyester foils). Therefore, 24 samples were prepared, characterized and their electrical conductivity was compared. Raman spectroscopy and scanning electron microscopy were used for the characterization of the structure of samples. Thickness of layers was measured using atomic force microscopy. Based on the comparison of samples and with respect to the aim of obtaining high electrical conductivity, it was found that the most suitable substrate is polyester foil and preparation conditions are T = 20 °C, t = 6 h, p < 5 µm. To obtain highly conductive layers on glass substrates (although less conductive than layers on foil), preparation time have to be shortened to 4 h.  相似文献   

20.
By means of a facilely designed strategy, we successfully fabricated the multilayer and conductive organo-silica/polystyrene/polyaniline (organo-silica/PS/PANi) composite particles. First, organo-silica/PS core/shell composite particles were synthesized by seeded emulsion polymerization and the vinyl groups located on the surface of organo-silica nanoparticles were used to induce in situ polymerization of styrene. The influence of the route of the addition of styrene on the morphology of organo-silica/PS composite particles was investigated. Then, the coating of organo-silica/PS composite particles with PANi was achieved by virtue of the "Swelling-Diffusion-Interfacial-Polymerization Method" (SDIPM). The whole preparation process was monitored by transmission electron microscope, scanning electron microscope, Fourier transform infrared, Raman spectroscopy, dynamic light scattering, and thermogravimetry. As a result, the multilayer and conductive organo-silica/PS/PANi nanocomposites possessed of a uniform size and well-defined morphology, and furthermore, their structure could be well controlled by simply changing the weight ratio of aniline/PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号