首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the standard, low pressure, discharge‐flow technique, with resonance fluorescence in the vacuum ultraviolet to observe Cl atoms, rate constants have been determined for the reaction of Cl atoms with O3 at temperatures down to 184 K. The measured rate constants for 298–184 K fit the Arrhenius expression k(T) = (3.1 ± 1.35) × 10?11 exp((?280 ±100 K)/T) cm3 molecule?1 s?1. The results extend the data on this key atmospheric reaction to slightly lower temperatures. The data are in fairly good agreement with those currently in the literature but suggest that the rate constant is approximately 15% lower than that given by currently recommended rate expressions at the lowest temperatures found in the stratosphere.© 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 104–109, 2002  相似文献   

2.
Direct determinations of the rate constants (cm3/molec · sec) k1, k2, and k3 from 298 to 299°K are reported, using atomic resonance fluorescence in discharge flow systems:
  • 1 One standard deviation.
  • The rate constant k1, which has not been determined previously, was found to possess an insignificant temperature coefficient (EA = (0 ± 700) J/mole) in the range of 299 to 619°K. The present result for k2 agrees well with reinterpreted values from the one previous determination. Measurements of O atom consumption rates and Br atom production rates in the O + Br2 reaction are interpreted to give an estimate of the rate constant k4, which has not been reported previously, at 298°K: k3 has been measured at three temperatures between 299 and 602°K. The present and previous results for k3 were combined to give the following rate expression:   相似文献   

    3.
    The adiabatic rotational state method is applied to the study of reactions between ions and polar asymmetric top molecules at very low temperatures. Detailed results of the calculated rate coefficients for the reaction of N+ with H2O are presented. A strong dependence of the rate coefficients on the initial rotational state is observed at low temperatures. In the case of a thermal distribution of rotational states, where the rate constants are summed over a Boltzman distribution, the replacement of the asymmetric top by an average symmetric top, which leads to a considerable simplification of the calculations, appears to be satisfactory. On the other hand, for a non thermal distribution, no such simplifying assumption can be made. In particular, the rate coefficient for a specific initial rotational state is quite sensitive to the orientation of the dipole moment.  相似文献   

    4.
    A flow tube method has been used to determine rate constants for the elementary reactions: Oxygen atoms were produced by adding a small excess of NO to a stream of partially dissociated nitrogen, and their reaction with hydrogen halide was monitored by observing the intensity of the NO + O afterglow. Experiments were carried out at temperatures from 293 to 440°K with HCl, and from 267 to 430°K with HBr. The role of secondary reactions was minimised and the residual effects were allowed for. The rate constants for the primary reactions could be matched by Arrhenius expressions: where the units are cm3/molec·sec and the errors correspond to a standard deviation.  相似文献   

    5.
    Rate constants for quenching of Ne3P2) metastable atoms have been measured at room temperature by the flowing afterglow technique for 12 reagents; Ar, Kr, Xe, H2, N2, CO, HCl, F2, Cl2, NF3, N2F4 and N2O. The values range from ≈5 × 10?11 cm3 molecule?1 s?1 for H2 and CO up to ≈42 × 10⊥-11 cm3 molecule?1s?1 for Cl2 and F2. Comparison with similar data for He(23S) and Ar(3P2) suggests that the thermal quenching cross sections follow the trends δ(Ar, 3P2) > δ(Ne, 3P2) ? δ(He, 2 3S). The major exceptions seem to be N2, CO and Kr which have usually small quenching cross sections for Ar(3P2).  相似文献   

    6.
    Rate constants have been measured at room temperature for the reactions of Cl atoms with formic acid and with the HOCO radical: Cl + HCOOH → HCl + HOCO (R1) Cl + HOCO → HCl + CO2 (R2) Cl atoms were generated by flash photolysis of Cl2 and the progress of reaction was followed by time‐resolved infrared absorption measurements using tunable diode lasers on the CO2 that was formed either in the pair of reactions ( R1 ) plus ( R2 ), or in reaction ( R1 ) followed by O2 + HOCO → HO2 + CO2 (R3) In a separate series of experiments, conditions were chosen so that the kinetics of CO2 formation were dominated either by the rate of reaction ( R1 ) or by that of reactions ( R1 ) and ( R2 ) combined. The results of our analysis of these experiments yielded: k1 = (1.83 ± 0.12) × 10−13 cm3 molecule−1 s−1 k2 = (4.8 ± 1.0) × 10−11 cm3 molecule−1 s−1 © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 85–91, 2000  相似文献   

    7.
    Earlier work on the reactions of O(3P) atoms with HCl and HBr has been extended by measuring rate constants for A flow-tube method was used with chemiluminescent monitoring of the removal of atomic oxygen. Rate constants were measured at temperatures between 340 and 489 K for (2a) and 295 and 419 K for (2b); they can be matched by the Arrhenius expressions: where the units are cm3 molecule?1 sec?1 and the errors correspond to a single standard deviation. The results of a quasiclassical trajectory study of collisions of O(3P) with HCl (v = 0,1, and 2) and DCl (v= 0,1, and 2) are also reported. These strengthen the conclusion that, although the rates of reactions (1a) and (2a) are selectively enhanced by vibrationally exciting HCl or DCl, molecules with 0 < v ? 2 are mainly removed in collisions with O(3P) atoms by nonreactive relaxation.  相似文献   

    8.
    Using a relative rate method, rate constants for the gas-phase reactions of 2-methyl-3-buten-2-ol (MBO) with OH radicals, ozone, NO3 radicals, and Cl atoms have been investigated using FTIR. The measured values for MBO at 298±2 K and 740±5 torr total pressure are: kOH=(3.9±1.2)×10−11 cm3 molecule−1 s−1, kO3=(8.6±2.9)×10−18 cm3 molecule−1 s−1, k=(8.6±2.9)×10−15 cm3 molecule−1 s−1, and kCl=(4.7±1.0)×10−10 cm3 molecule−1 s−1. Atmospheric lifetimes have been estimated with respect to the reactions with OH, O3, NO3, and Cl. The atmospheric relevance of this compound as a precursor for acetone is, also, briefly discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 589–594, 1998  相似文献   

    9.
    We consider the possibility of determining the rate constants for reactions of gaseous substrates with O radical anions adsorbed on catalysts from the loss of the substrate from the gas phase. We consider two reaction pathways, including attack on O by the substrate from the gas phase and from the surface of the contact catalyst, under conditions of equilibrium distribution of the substrate between the phases.L. M. Litvinenko Institute of Physical Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, 70 ul. R. Lyuksemburg, Donetsk 340114, Ukraine. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 32, No. 2, pp. 80–82, March–April 1996. Original article submitted June 6, 1995.  相似文献   

    10.
    Rate constants for the gas-phase reactions of the Cl atom with a series of alkanes have been determined at 296 ± 2 K using a relative rate method. Using a rate constant for the Cl atom reaction with n-butane of 1.94 × 10?10 cm3 molecule?1 s?1, the rate constants obtained (in units of 10?11 cm3 molecule?1 s?1) were: 2-methylpentane, 25.0 ± 0.8; 3-methylpentane, 24.8 ± 0.6; cyclohexane, 30.8 ± 1.2; cyclohexane-d12, 25.6 ± 0.8; 2,4-dimethylpentane, 25.6 ± 1.2; 2,2,3-trimethylbutane, 17.9 ± 0.7; methylcyclohexane, 34.7 ± 1.2; n-octane, 40.5 ± 1.2; 2,2,4-trimethylpentane, 23.1 ± 0.8; 2,2,3,3-tetramethylbutane, 15.6 ± 0.9; n-nonane, 42.9 ± 1.2; n-decane, 48.7 ± 1.8; and cis-bicyclo[4.4.0]decane, 43.1 ± 0.8, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the n-butane rate constant. These data have been combined with rate constants obtained previously for ten C2? C7 alkanes and this entire data set has been used to develop an estimation method allowing the room temperature rate constants for the reactions of the Cl atom with alkanes to be calculated. © 1995 John Wiley & Sons, Inc.  相似文献   

    11.
    12.
    The rate constants and kinetic isotope effects of the reaction of methane with four isotopes of hydrogen, protium (H), deuterium (D), tritium (T), and muonium (Mu), were studied using variational transition state theory with multidimensional tunneling on an analytical potential energy surface, PES-2002, previously constructed by our group. For the four isotopes, our kinetics results agree reasonably with available experimental measurements, improving previous theoretical results that used different potential energy surfaces and/or theoretical approaches. In the comparison of the reactivity between protium and muonium, which is the most severe test of the surface and theoretical method due to the large mass difference between the two isotopes, some sources of discrepancy between theory and experiment were analyzed. These were the zero-point energy, tunneling effect, and the role of the reactivity from methane excited vibrational states.  相似文献   

    13.
    Rate constants for the reactions of Cl atoms and OH radicals with haloalkanes were measured using the relative rate technique. From these values the atmospheric lifetimes of the organics with respect to Cl atoms and OH radicals were calculated. Cl atoms were produced by the photolysis of chlorine gas, and photolysis of methyl nitrite was the source of OH radicals. The rate constants were measured for a series of brominated and chlorinated alkanes for which measurements have not yet been reported excepting: k(Cl + 1-chloropropane) and k(OH + 1-chloropropane, 2-chloropropane, and bromoethane). The organics studied were 1-chloropropane, 2-chloropropane, 1,3 dichloropropane, 2-chloro 2methylpropane, bromoethane, 1-bromopropane, 2-bromopropane, 1-bromobutane, 1-bromopentane, and 1-bromohexane. Cl atom reactions were measured at 298 K, the OH radical reactions were measured at temperatures between 298–308 K. © 1993 John Wiley & Sons, Inc.  相似文献   

    14.
    Rate constants for the reactions of OH radicals and Cl atoms with CH3ONO, C2H5ONO, n-C3H7ONO, n-C4H9ONO, and n-C5H11ONO have been determined at 298 ± 2 K and a total pressure of approximately 1 atm. The OH rate data were obtained using both the absolute rate technique of pulse radiolysis combined with kinetic spectroscopy and a relative rate method involving simultaneous measurement of the loss of the nitrite and the reference compound. The Cl rate constants were measured using the relative rate method. Values of the rate constants in units of 10?13 cm3 molecule?1 s?1 are:
    Relative Cl Relative OH Absolute OH
    CH3ONO 94.4 ± 7.4 3.0 ± 1.0 2.6 ± 0.5
    C2H5ONO 295 ± 13 7.0 ± 1.5 7.0 ?1.1
    n-C3H7ONO 646 ± 58 11.0 ± 1.5 12.0 ± 0.5
    n-C4H9ONO 1370 ± 58 22.7 ± 0.8 27.2 ± 6.0
    n-C5H11ONO 2464 ± 444 37.4 ± 5.0 42.5 ± 8.0
    When compared to rate data for the corresponding alkanes the results show that the -ONO group decreases the rate constant for H atom abstraction by the OH radical from groups bonded to the -ONO group and also decreases that for groups in the β position. Similar results were found for the reaction of Cl atoms with these compounds. The results are discussed in terms of reactivity trends.  相似文献   

    15.
    The mechanism of the formation of supercooled ternary H(2)SO(4)/H(2)O/HNO(3) solution (STS) droplets in the polar winter stratosphere, i.e., the uptake of nitric acid and water onto background sulfate aerosols at T < 195 K, was successfully mimicked during a simulation experiment at the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. Supercooled sulfuric acid droplets, acting as background aerosol, were added to the cooled AIDA vessel at T = 193.6 K, followed by the addition of ozone and nitrogen dioxide. N(2)O(5), the product of the gas phase reaction between O(3) and NO(2), was then hydrolyzed in the liquid phase with an uptake coefficient gamma(N(2)O(5)). From this experiment, a series of FTIR extinction spectra of STS droplets was obtained, covering a broad range of different STS compositions. This infrared spectra sequence was used for a quantitative test of the accuracy of published infrared optical constants for STS aerosols, needed, for example, as input in remote sensing applications. The present findings indicate that the implementation of a mixing rule approach, i.e., calculating the refractive indices of ternary H(2)SO(4)/H(2)O/HNO(3) solution droplets based on accurate reference data sets for the two binary H(2)SO(4)/H(2)O and HNO(3)/H(2)O systems, is justified. Additional model calculations revealed that the uptake coefficient gamma(N(2)O(5)) on STS aerosols strongly decreases with increasing nitrate concentration in the particles, demonstrating that this so-called nitrate effect, already well-established from uptake experiments conducted at room temperature, is also dominant at stratospheric temperatures.  相似文献   

    16.
    The surface reactions of CH3OH, CH2DOH, and CHD2OH with cold D atoms at 10 K were investigated using an atomic beam source and FTIR. Methyl-deuterated isotopologues CH2DOH, CHD2OH, and CD3OH were produced by exposure of amorphous solid CH3OH to D atoms at 10 K, and the pseudo-first-order rates for the reactions CH3OH + D --> CH2OH + HD, CH2DOH + D --> CHDOH + HD, and CHD2OH + D --> CD2OH + HD were estimated. The ratios of the reaction rates of the second and third reactions to the first reaction were 0.69 +/- 0.11 and 0.52 +/- 0.14, respectively. The difference in reaction rates is thought to be due to a secondary kinetic isotope effect on the H-abstraction reaction from the methyl side by D atoms.  相似文献   

    17.
    Rate constants for the reactions of OH radicals and Cl atoms with diethyl sulfide (DES), di-n-propyl sulfide (DPS), and di-n-butyl sulfide (DBS) have been determined at 295 ± 3 K and a total pressure of 1 atm. Hydroxyl radical rate data was obtained using the absolute technique of pulse radiolysis combined with kinetic spectroscopy. The chlorine atom rate constants were measured using a conventional photolytic relative rate method. The rate constant for the reaction of Cl atoms with dimethyl sulfide (DMS) was also determined. The following rate constants were obtained:   相似文献   

    18.
    The complex index of refraction of liquid HNO3/H2O and H2SO4/HNO3/H2O has been obtained at different temperatures and acid concentrations. FT-IR specular reflectance spectra were obtained for 30, 54, and 64 wt % aqueous HNO3 and for four different H2SO4/HNO3/H2O mixtures in the temperature region from 293 to 183 K. The complex index of refraction was obtained from the reflectance spectra with the Kramers-Kronig transformation. The optical constants of the binary and ternary mixtures vary with the acid concentration and the temperature. The results demonstrate that vibrational bands originating from the sulfate species are more sensitive to changes in temperature than the bands originating from vibrations in the nitrate species; only minor changes in the nitrate vibrational bands are observed as the temperature decreases below 248 K.  相似文献   

    19.
    A new intermolecular force field for nitrogen atoms in organic molecules was derived from a training dataset of 76 observed azahydrocarbon crystal structures and 11 observed heats of sublimation. The previously published W99 force field for hydrogen, carbon, and oxygen was thus extended to include nitrogen atoms. Nitrogen atoms were divided into four classes: N(1) for triply bonded nitrogen, N(2) for nitrogen with no bonded hydrogen (except the triple bonded case), N(3) for nitrogen with one bonded hydrogen, and N(4) for nitrogen with two or more bonded hydrogens. H(4) designated hydrogen bonded to nitrogen. Wavefunctions of 6‐31g** quality were calculated for each molecule and the molecular electric potential (MEP) was modeled with net atomic and supplementary site charges. Lone pair electron charge sites were included for nitrogen atoms where appropriate, and methylene bisector charges were used for CH2 and CH3 groups when fitting the MEP. X? H bond distances were set to standard values for the wave function calculation and then foreshortened by 0.1 Å for the MEP and force field fitting. Using the force field optimized to the training dataset, each azahydrocarbon crystal structure was relaxed by intermolecular energy minimization. Predicted maximum changes in unit cell edge lengths for each crystal were 3% or less. The complete force field for H, C, N, and O atoms was tested by intermolecular energy relaxation of nucleoside and peptide molecular crystals. Even though these molecules were not included in any of the training datasets for the force field, agreement with their observed crystal structures was very good, with predicted unit cell edge shifts usually less than 2%. These tests included crystal structures of representatives of all eight common nucleosides found in DNA and RNA, 15 dipeptides, four tripeptides, two tetrapeptides, and a pentapeptide with two molecules in the asymmetric unit. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1154–1166, 2001  相似文献   

    20.
    The absolute rate constants have been measured for several gas-phase chlorine atom-molecule reactions at 25°C by resonance fluorescence. These reactions and their corresponding rate constants in units of cm3 mole?1 sec?1 are: The effects of varying the substrate pressure, total pressure, light intensity and chlorine-atom source on the value of the bimolecular rate constants have been investigated for all these reactions. Conditions under which no competing side reaction occurs were established and the reported rate constants were measured under these conditions. For reactions (2), (5), (6), (7), and 8, there is a discrepancy of a factor of two between the rate constants measured in this work and values in the literature; it is suggested that this is due to an error in the previously measured value of k/k upon which the relative measurements in the literature ultimately depend.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号