首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The lowest singlet and triplet states of the radicals CH2, CHF, CF2, and CHCH3 have been investigated both in SCF and IEPA approximation (“independent electron pair approach” to account for electron correlation). The SCF calculations yield triplet ground states for CH2, CHF, and CHCH3, and a singlet ground state for CF2. Electron correlation stabilizes the singlet state by about 14 kcal/mole with respect to the triplet for all four radicals leading to a singlet ground state also for CHF. The final triplet-singlet energy separations are 10, 6, ?11, ?47 kcal/mole for CH2, CHCH3, CHF, CF2, respectively. Values for equilibrium bond angles, ionization potentials and bond energies are also given.  相似文献   

2.
Ab initio calculations on the structure and geometry of the three isomers of N2H2 (trans-diimide, cis-diimide, and 1,1-dihydrodiazine) were performed both on HF and CI level using gaussian basis sets with polarization functions. The trans and cis isomers have singlet ground states; the trans isomer is found to be lower in energy than the cis isomer by 6.9 kcal/mol (HF) and 5.8 kcal/mol (CI), respectively. The barrier for the trans-cis isomerization is predicted to be 56 (HF) and 55 (CI) kcal/mol. H2 N=N has a triplet ground state with a non-planar equilibrium geometry and a rather long NN bond of 1.34 Å. Its lowest singlet state, however, is planar with an NN double bond of 1.22 Å; it is found to lie about 3 kcal/mol above the triplet and 26 kcal/mol above the singlet ground state of trans-diimide.  相似文献   

3.
The low-lying singlet and triplet states of H2CBe and HCBeH are examined using ab inito molecular orbital theory. In agreement with earlier results, the lowest-lying structure of H2CBe has C2v symmetry and is a triplet with one π electron (3 B1). The results presented here suggest that the lowest-energy singlet structure is the (1B1) open-shell singlet, also with C2v symmetry, at least 2.5 kcal/mol higher in energy. The singlet C2v structure with two π electrons (1A1) is 15.9 kcal/mol higher than 3B1. All of these structures are bound with respect to the ground state of methylene and the beryllium atom. In HCBeH, linear equilibrium geometries are found for the triplet (3Σ) and singlet (1Δ) states. The triplet is more stable than the singlet (1Δ) by 35.4 kcal/mol, and is only 2.9 kcal/mol higher in energy than triplet H2 CBe. Since the transition structure connecting these two triplet molecules is found to be 50.2 kcal/mol higher in energy than H2 CBe, both triplet equilibrium species might exist independently. The harmonic vibrational frequencies of all structures are also reported.  相似文献   

4.
Ab initio SCF CI calculations with a minimal STO-3G basis set have been performed on the hydrogen bonded dimers in which H2O is the proton donor to H2CO in its relaxed singlet and triplet n→π* states. Two dimers which are easily interconverted are found in the singet n→π* state with hydrogen bond energies of 1.82 and 1.71 kcal/mole. The equilibrium dimer in the triplet state has a hydrogen bond energy of 2.97 kcal/mole. In both states, hydrogen bond formation occurs at the carbon atom. The structures of the dimers and the nature of the intermolecular surfaces in the regions of hydrogen bond formation are examined. Electron densities and distributions are also discussed.  相似文献   

5.
Ab initio calculations on the lowest singlet and triplet states of 2,2-disilylcyclopentane-1,3-diyl find that the singlet lies well below the triplet. The C 2 singlet diradical is calculated to be a minimum on the potential energy surface with an enthalpic barrier to ring closure of ΔH 298 = 13.5 kcal/mol at the CASPT2/6-31G* level of theory. The energy of the 1,3-divinyl-substituted singlet diradical is calculated to be only 0.8 kcal/mol higher than that of 5,5-disilyl-1,3-divinylbicyclo[2.1.0]pentane at this level of theory, but the transition state for their equilibration is computed to be 12.8 kcal/mol above the diradical in energy. Received: 2 July 1998 / Accepted: 4 August 1998 / Published online: 16 November 1998  相似文献   

6.
A systematic study has been carried out for the determination and characterization of the lowest states of Pd, Pd2, and Pd3 using some of the best ab initio tools available at present (conventional and DFT). Full electron ab initio calculations using the HF, MP2, MP3, MP4, and QCI methods were compared with DFT methods using several gradient-corrected functionals as well as the hybrid B3LYP functional that performed very well for the energetics studies of these small clusters. A suitable basis set has been found to perform considerably well with palladium atoms, another of double-ζ quality has been found insufficient to reproduce basic characteristics of the smallest palladium clusters. The results indicate that the ground state for Pd is a singlet. The dimer is a triplet; however, it is very difficult to ascertain due to the closeness between singlet and triplet states (0.9 kcal/mol). The trimer ground state was found to be a triplet with a separation from the lowest singlet of 3.2 kcal/mol. The lowest triplet and singlet of Pd3 were practically equilateral triangles. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
Oxygen adsorption on Ag(331) is analyzed in a cluster approximation using the density functional theory (DFT) method. Adsorption centers (AC) for the bridge (S2) and three-center (S3) coordinations of oxygen are identified on the stepwise face Ag(331) and the Ag-O bond energies at these centers are calculated. For atomic adsorption, the Ag-O bond strength varies from 50 to 65 kcal/mole, depending on AC. The heat of molecular adsorption DH = 5 kcal/mole for S2(L1-L2) type AC. The molecule is oriented parallel to Ag(110) between the terraces with R(O-O) = 1.34 å Calculations showed that the ground state of the O2Ag20(331) system is a triplet, but a part of spin density is delocalized on silver atoms, so that the spin density on oxygen ρs(O) = 0.46 (ρs = 1.0 for the free O2 molecule). The energy of the singlet state is 9 kcal/mole greater than that of the ground state.  相似文献   

8.
The photoelectron spectrum of the trimethylenemethane (TMM) negative ion is described. The electron affinity of TMM is found from the spectrum to be 0. 431±0.006 eV, and the energy difference between the [(X)\tilde]3 A2\tilde X^3 A'_2 3A′2 and [(b)\tilde]1 A1\tilde b^1 A_1 1A1 states of TMM is determined to be 16.1±0.2 kcal/mol. The energy difference between the lowest energy triplet and singlet states is estimated to be 13–16 kcal/mol. The enthalpy of formation of TMM is measured to be 70±3 kcal/mol, and the C-H bond enthalpy in 2-methylallyl radical is 90±2 kcal/mol. Previously unobserved vibrational frequencies of 425, 915, and 1310 cm−1 are found for the triplet state of TMM, whereas a frequency of 325 cm−1 is found for the singlet state. In addition, an overtone peak is observed for the triplet state at 1455 cm−1, and both states contain peaks that are assigned to bands arising from excited vibrational levels of the ion.  相似文献   

9.
In order to elucidate the photo-decomposition mechanism of polyurethane based on polyester diol-diphenylmethane-p,p′-diisocyanate, the effects of triplet quenchers, piperylene and oxygen on the photo-decomposition of the polymer, methylene bis (ethyl N-phenylcarbamate) (MEPC) and ethyl N-phenylcarbamate (EPC) were examined in solution. Energy levels and lifetimes of the excited states of these compounds were also determined.Piperylene and oxygen did not affect the photo-decomposition of the samples examined. The results imply that the photo-decomposition of the polymer starts from the excited singlet state. The energy levels and lifetimes for the photo-decomposition of the polymer were as follows: the excited singlet state (S1): 98·6 kcal/mol (3·2 nsec): the excited triplet state (T1): 76·7 kcal/mole (2·9 sec).  相似文献   

10.
The OH+ cation is a well‐known diatomic for which the triplet (3Σ?) ground state is 50.5 kcal mol?1 more stable than its corresponding singlet (1Δ) excited state. However, the singlet forms a strong donor–acceptor bond to argon with a bond energy of 66.4 kcal mol?1 at the CCSDT(Q)/CBS level, making the singlet ArOH+ cation 3.9 kcal mol?1 more stable than the lowest energy triplet complex. Both singlet and triplet isomers of this molecular ion were prepared in a cold molecular beam using different ion sources. Infrared photodissociation spectroscopy in combination with messenger atom tagging shows that the two spin isomers exhibit completely different spectral signatures. The ground state of ArOH+ is the predicted singlet with a covalent Ar?O bond.  相似文献   

11.
Qualitative arguments and preliminary theoretical studies by Harrison suggest that lithiosilylene (SiHLi) may have a triplet electronic ground state. This possibility has been confirmed in the present detailed ab initio quantum mechanical study. Using double-zeta and double-zeta plus polarization basis sets, the different low-lying electronic states of SiHLi have been investigated using self-consistent-field and configuration interaction methods. The triplet ground state potential surface is very flat, with two nearly degenerate minima at θ (HSiLi) values of 137° and 48°, respectively. The lowest singlet state lies ~ 7 kcal higher in energy and is predicted to have an equilibrium bond angle of ~93°, much like the parent silylene SiH2. Vibrational frequencies are predicted for all stationary points.  相似文献   

12.
The π*←n excited state kinetics of hexafluoroacetone are reinvestigated in the presence of a vibrational relaxer and sufficient triplet state quencher so that only the reactions of the electronically excited upper singlet state are examined. From a Stern–Volmer type analysis it is concluded that vibrational relaxation of the initially formed vibrationally and electronically excited upper singlet state is via a multistage collisional mechanism. An activation energy of about 6 kcal/mole is reported for the unimolecular decomposition of the upper singlet state.  相似文献   

13.
The fluorescence from the lowest excited singlet state following excitation of the lowest triplet state was observed for anthracene, 9-methylanthracene, and 9-phenylanthracene in ethanol by a newly devised double excitation method which is essentially the combination of flash and laser photolysis. The quantum yield of intersystem crossing from the excited triplet state, Tn(n ? 2), to the lowest excited singlet state was markedly increased by methyl- and phenyl-substitution at the meso-position.  相似文献   

14.
The geometries and energies of beryllium clusters up to Be5 are examined using ab initio molecular orbital theory. Allowances are made for electron correlation with Møller—Plesset perturbation theory to fourth order. Correlation is found to have a dramatic effect on the relative energies of the several structures examined for Be4 and Be5. Furthermore, the effect of d-type basis functions on the correlation energy results in an increased binding energy for the clusters. Be2 is only weakly bound. For Be3, the best estimate of the binding energy is 6 kcal/mole for the singlet equilateral triangle. Be4 is tetrahedral in its ground state and the estimated binding is 56 kcal/mole. The best structure for Be5 is a singlet trigonal bipyramid, and the binding energy is 88 kcal/mole at the highest level of theory used.  相似文献   

15.
The photochemistry of azoisopropane is reinvestigated at 366 nm over an extended pressure range by using n-butane as an added bath gas, and over a range of temperature from 277° to 180°C. The Stern-Volmer type plot of the N2 product quantum yield is interpreted in terms of the decomposition of the vibrationally excited upper singlet and triplet states, with the onset of the dissociation of the vibrationally equilibrated triplet state as the temperature is increased. The energy barrier for the dissociation of the vibrationally equilibrated first triplet state is found to be 8.8 kcal/mole. Triplet sensitization experiments with biacetyl correlate with our observations, and it is suggested that the proposed mechanism is generally applicable to the photodissociation of acyclic azoalkanes at 366 nm, based on a comparison of our data with those of Wu and Rice on hexafluoroazomethane.  相似文献   

16.
The complete geometrically optimized triplet state of ethane, using the MINDO/2 method, spontaneously dissociates into CH3H; and H2. The reaction paths for rearrangement of CH3CH: to CH2CH2 in the triplet state is calculated. The activation energy was determined to be 19.4 kcal/mole. These results are discussed in the context of previously reported experimental results for the gas phase photolyses of alkanes.  相似文献   

17.
Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin–orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the 2|Hso|S1>, 1|Hso|S1>, and 1|Hso|S0> spin–orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1→T1 population transfer is found to proceed at a rate of ≈107 s−1 in the isolated molecule.  相似文献   

18.
A computational study of tetrahedrene at the RCCD/cc-pVDZ level led to a singlet-state structure with a lowest energy vibrational mode of 660 cm(-1). The corresponding triplet state was found to be ca. 37 kcal/mol lower in energy than the singlet state. The heat of formation of the singlet state was estimated to be 270 kcal/mol. An isomeric singlet bicyclic dicarbene bis-bicyclo[1.1.0]cyclobutylidene was found to be approximately 94 kcal/mol lower in energy than tetrahedrene.  相似文献   

19.
The rotational barrier height Erot in the lowest triplet state oxirane molecule was calculated to be 26.3 kcal/mole using a double zeta basis set with partial geometry optimization. This suggest ldrelaxedrd rotation and the computed e(T1- E(So) + Erot value is commensurate with the enthalpy change for the oxirane-forming O(3P) + C2H4 reaction, thus providing a rationale for the stereochemical features of the reaction.  相似文献   

20.
The decay processes of the lowest excited singlet and triplet states of five methylated angelicins (4,6,4′-trimethyl-angelicin, MA, and four methylated thioangelicins, MTA; see Scheme 1) were investigated in live solvents by stationary and pulsed fluorometric and flash photolytic techniques. In particular, the solvent effects on absorption, fluorescence, quantum yields of fluorescence (φF) and triplet formation (φT), lifetimes of fluorescence (τF) and the triplet state (τT) and the quantum yields of singlet oxygen production (φΔ) were investigated. Semiempirical (ZINDO/S-CI) calculations were carried out to obtain information (transition probabilities and nature) on the lowest excited singlet and triplet states. The quantum mechanical calculations and the solvent effect on the photophysical properties showed that the lowest excited singlet state (S1) is a partially allowed π,π* state, while the close-lying S2 state is n,π* in nature. The efficiencies of fluorescence, S1→T1 intersystem crossing (ISC) and S1→ S0 internal conversion (IC) strongly depend on the energy gap between S1, and S2 and are explained in terms of the so-called proximity effect. In fact, for MA in cyclohexane, only the S1→ S0 internal conversion is operative, while in acetonitrile and ethanol, where the n.π* state is shifted to higher energy, the efficiencies of fluorescence and ISC increase significantly. The energy gap between S1 and S2 increases in MTA, where the furanic oxygen is replaced by a sulfur atom. Consequently, the solvent effect on the photophysical parameters of MTA is less marked than for MA; e.g. fluorescence and triplet-triplet absorption are also detectable in the nonpolar cyclohexane. The lowest excited singlet state of molecular oxygen O2(1Dg) was produced efficiently in polar solvents by energy transfer from the T1 state of MA and MTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号