首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemisorption of C2H2 on W(110) has been studied by high resolution electron energy low spectroscopy. At low coverages the molecule dissociates, while at thigh coverage C2H2 is di-σ adsorbed with a CC bond order of 0.25 and a CH bond angle of. ≈ 103°.  相似文献   

2.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


3.
The adsorption of C2H4 on Cu(100) at 80 K has been investigated by angle-dependent high-resolution electron energy loss spectroscopy (EELS) and low-energy electron diffraction (LEED). Our observations are consistent with a model where the ethene molecule is adsorbed in a configuration parallel to the Cu(100) surface. The molecule-metal interaction is weak and presumably of π character.  相似文献   

4.
The results of several MC SCF calculations on CH4, C2H4 and C2H6 with minimun bases of Slater type AO's are reported. The computing method is a quadratically convergent process. Better final energies are obtained if localized MO's are used.  相似文献   

5.
We report a new synthesis and characterization of Ir(C2H4)2(C5H7O2) [(acetylacetonato)-bis(η2-ethene)iridium(I)], prepared from (NH4)3IrCl6 · H2O in a yield of about 45%. The compound has been characterized by X-ray diffraction crystallography, infrared, Raman, and NMR spectroscopies and calculations at the level of density functional theory. Ir(C2H4)2(C5H7O2) is isostructural with Rh(C2H4)2(C5H7O2), but there is a substantial difference in the ethylene binding energies, with Ir-ethylene having a stronger interaction than Rh-ethylene; two ethylenes are bound to Ir with a binding energy of 94 kcal/mol and to Rh with a binding energy of 70 kcal/mol.  相似文献   

6.
We report the surface-enhanced Raman spectra of ethylene and acetylene adsorbed on colloidal silver particles formed by gas aggregation and isolated at low temperatures in solid adsorbate/argon matrices. The spectra of both molecules exhibit modes which are normally Raman-forbidden. Excitation with several visible laser frequencies indicated that the degree of enhancement increased towards the blue.  相似文献   

7.
High pressure vapour-liquid equilibrium data for the C2H6 + N2, C2H4 + N2, C3H8 + N2, and C3H6 + N2 systems are presented. The data are obtained isothermally in the range from 200 K to 290 K. For each point of data, temperature, pressure and liquid and vapour phase mole fractions are measured.Values for the vapour phase mole fractions are calculated from the obtained pressure, temperature and liquid phase mole fractions. The calculated values are compared with the experimental results, and it is found that the average mean deviation between calculated and experimental mole fractions is less than 0.009 for the systems considered in this work.  相似文献   

8.
C2(a 3πu) disappearance rate constants of 1.44, 0.96, 0.0296, 0.0130 and < 10?6(x10?10cm3s?1) are reported for reactions with C2H4, C2H2, O2, C2H6, and CH4, respectively at 298 K. C2(a 3πu) fragments are generated by multiphoton ArF excimer laser photodissociation at C2H2, and monitored by dye laser induced fluorescence. Arguments are presented which favor chemical reactions over the C2(a 3πu) → (X 1σ+g) quenching channel. C2 + C2H2 represents the one possible exception to the reactive channel.  相似文献   

9.
10.
The high-pressure limiting rate constants of the reactions between H or D atoms and three isotopic ethylenes have been measured in the temperature range 206–461 K. Practically no isotope effects due to the differences between the ethylenes could be observed. This result does not agree with the prediction recently made by the activated complex theory.  相似文献   

11.
Two new salts of malonic acid have been prepared: the copper(II) malonate tetrahydrate and the copper(II)-ammonium double malonate. Their study by thermal analysis (TG and DTA) leads to the following results:Cu(C3H2O4)·4H2O: the dehydration is rather complex and it is only under careful conditions that an intermediate hydrate Cu(C3H2O4)·3H2O could be traced. At about 170°C the dehydration is not ended (the salt holds yet about 0.15H2O) and the anhydrous salt occurs only at about 240°C. It decomposes immediately leading to residues the composition of which depends upon the surrounding atmosphere; the part played by the gas given off is discussed.Cu(NH4)2(C3H2O4)2: this salt melts and decomposes simultaneously at about 190°C. During the decomposition the copper nitride Cu3N forms as intermediate compound (as well as copper metal). Concerning the final residues of the decomposition the results and the conclusions are the same as the ones of the previous case.  相似文献   

12.
Experimental differential cross sections for 40 keV electrons scattered by C2H2, C2H4 and C2H6 molecules were measured using the gas electron diffraction method in the range of the scattering variable s from s = 1 A?1 to s = 30 A?1. The differential cross sections for neon were also measured and compared with calculated differential cross sections to calibrate the diffractograph. Experimental differential cross sections show significant deviations with respect to theoretical differential cross sections calculated from the Debye-Ehrenfest model, mainly in the range of small scattering angles. The observed differences are connected to chemical binding effects. From the experimental data, an estimation of the binding energy was carried out. The deduced values: ?0.58 ± 0.20 au for C2H2, ?0.94 ± 0.30 au for C2H4 and ?1.23 ± 0.40 au for C2H6 are in agreement with those obtained by thermochemical methods.  相似文献   

13.
The equilibrium geometry of disilyne is not linear, but is twisted. The potential surfaces of acetylene and disilyne have a critical internuclear distance between the central atoms, where the stable geometry changes from linear to twisted forms the R-dependence of the valence-shell electron energy causes the difference in the structure of the molecules.  相似文献   

14.
A new vanadium(III) phosphite, (C4H8N2H4)0.5(C4H8N2H3)[V4(HPO3)7(H2O)3]1.5H2O, has been synthesized hydrothermally by using V2O5, H3PO3 as reactants, piperazine as the structure-directing agent. The as-synthesized product was characterized by powder X-ray diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis, and SQUID magnetometer. Single-crystal X-ray diffraction analysis shows that the title compound crystallized in the trigonal space group (No. 165) with the parameters: , , and Z=4. Its structure is built up by alternation of octahedral VO6 or VO5(H2O) and pseudo-pyramidal HPO3 units to form infinite 2D layers, and these layers are interconnected by sharing vertex-oxygen with octahedral VO6 units to generate a 3D open-framework structure with 12-membered ring channels in a and b directions, respectively, where there exist entrapped diprotonated and mono-protonated piperazine cations, and water molecules. Magnetic measurement indicates that paramagnetic behavior is observed down to 4 K.  相似文献   

15.
The Raman and infrared spectra (4000200 cm?1) of (C4H4P)Mn(CO)3 and (C4D4P)Mn(CO)3, and of [C4H2(CH3)2P]Mn(CO)3 and [C4D2(CH3)2P]Mn(CO)3 in the liquid and solid states (10–400 K) have been investigated. A complete vibrational assignment is proposed and valence force fields of the (C5H5) and (C4H4P) cycles are compared. From these results, it is clearly shown that the (C4H4P) rings are more electrophilic and weaker π-electron donors than (C5H5) rings, this is in agreement with their chemical behavior.  相似文献   

16.
17.
采用自旋极化密度泛函理论和周期平板模型,对C2H4在铁基费托合成催化剂活性相之一Fe3C(100)表面从热力学和动力学两个方面分析了C2H4在Fe3C(100)表面进行脱氢和裂解反应的竞争性。结果表明,C2H4在Fe3C(100)表面的μ-bridging吸附比π、di-σ吸附更加稳定;C2H4与Fe3C(100)面的相互作用导致C2H4的C原子部分发生重新杂化(sp2→sp3),使C原子呈近四面体结构。在Fe3C(100)表面C2H4易于发生脱氢反应,C-C键裂解反应不具有竞争性。亚乙烯基CCH2和乙烯基CHCH2是Fe3C(100)表面最丰的C2物种,或是C2H4参与链增长的主要单体形式。  相似文献   

18.
19.
Reaction of photogenerated (η5?C5H5)2W2(CO)4 with acetylene at 25°C yields a complex of the formula (η5-C5H5)2W2(CO)4(C2H2). The crystal structure of the complex shows it to have a tetrahedrane-like W2C2 core. The C—C bond distance of the C2H2 unit is 1.33 Å which is close to that of ethylene, considerably longer than the 1.20 Å for acetylenes. The W—W distance is 2.987 Å which is ~0.25 Å shorter than the W—W distance in (η5-C5H5)2W2(CO)6 but longer than that expected for (η5-C5H5)2W2(CO)4. By analogy to the parent (η5-C5H5)2M2(CO)6 species, the near-UV absorption in (η5-C5H5)2M2(CO)4(C2H2) is assigned to a σb → σ* transition. Owing to the shorter M—M bond in the C2H2 adducts, the σb → σ* absorption is at higher energy than in the (η5-C5H5)2M2(CO)6 complexes.  相似文献   

20.
赵明星  高颖  孟跃  倪生良 《化学通报》2014,77(11):1116-1119
在140℃下,以3-溴-4-甲基苯甲酸和咪唑为配体,通过水热法在甲醇/水混合溶剂中反应24 h合成了锌(Ⅱ)配合物Zn(C3H4N2)2(C8H6O2Br)2。通过元素分析、红外光谱、热重分析和X射线粉末衍射对配合物进行了结构表征,同时用X射线单晶衍射分析确定了其晶体结构。结果表明,其晶体属单斜晶系,空间群为C2/c,晶胞参数:a=13.257(3),b=9.765(2),c=20.494(4),β=107.79(3)°,V=2526.3(9)3,Dc=1.655g·cm-3,μ=4.170mm-1,F(000)=1248,Z=4,最终残差因子R1=0.0552,wR2=0.1378。配合物为单核结构,中心锌(Ⅱ)离子与来自2个3-溴-4-甲基苯甲酸根的2个O原子及2个咪唑分子的2个N原子配位,形成了畸变的四方锥几何体。晶体内,分子间则通过N—H…O氢键作用在ab面形成了层状结构。研究了配合物的发光性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号