首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation and protonation of aromatic anion radicals in 2-propanol were studied by kinetic spectrophotometric pulse radiolysis. All polycyclic hydrocarbons studied were found to react very rapidly with e?solv. Those with relatively high electron affinity were also reduced by (CH3)2CO?. The anion radicals formed undergo protonation by direct reaction with the alcohol molecule. The rate constants for this protonation vary from ≈ 6 × 105 s?1 for cis-stilbene and naphthalene down to 20 s?1 for perylene. The variations in rates are discussed in terms of changes in singlet energy separation (ΔES1 ← S0). The logarithm of the protonation rate constant for alternant hydrocarbons is linearly dependent on ΔES1 ← S0.  相似文献   

2.
Rate constants have been determined for the reactions of SO4? with a series of alkanes and ethers. The SO4? radical was produced by the laser-flash photolysis of persulfate, S2O82?. For methane, only an upper limit of 1 × 106 M?1 s?1 could be determined. For ethane, propane, and 2-methylpropane, rate constants of 0.44, 4.0, and 10.5 × 107 M?1 s?1 were found. For ethyl and n-propyl ether, rate constants of 1.3 × 108 and 2.2 × 108 M?1 s?1 were found and for 1,4-dioxane and tetrahydrofuran, rate constants of 7.2 × 107 and 2.8 × 108 were obtained. The reaction of SO4? with allyl alcohol was also studied and found to have a rate constant of 1.4 × 109 M?1 s?1.  相似文献   

3.
The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4-tert-octylphenol (OP) in the H2O2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×109 and 4.2×109 M?1 s?1, respectively. For BP the rate constant equal to 2.0×1010 M?1 s?1was also determined using water radiolysis as a source of hydroxyl radicals.  相似文献   

4.
J.G. Leipoldt  H. Meyer 《Polyhedron》1985,4(9):1527-1531
The reaction of Cl?, Br?, I?, Co(CN)63? and NCS? with meso-tetrakis (p-trimethylammoniumphenyl)porphinatodiaquorhodate(III), [RhTAPP(H2O)2]5+, has been studied at 15, 25 and 35°C in 0.1 M [H+] with μ = 1.00 M (NaNO3). The value of the acidity constant, Kal, at 25°C is 4.39 × 10?9 M. The reactions are first order in anion concentration up to 0.9 M. The values of the stability constants, K1, and the second order rate constants, k1, for the reaction with Cl?, Br?, I?, Co(CN)63? and NCS? are respectively 0.23 M?1 and 2.5 × 10?3 M?1 s?1, 1.1 M?1 and 6.92 × 10?3 M?1 s?1, 40.0 M?1 and 17.0 × 10?3 M?1 s?1, 550 M?1 and 20.0 × 10?3 M?1 s?1, 3400 M?1 and 20.9 × 10?3 M?1 s?1. The porphine greatly labilizes the Rh(III). There has been about a 500-fold increase in the rate constant for substitution compared to that of [Rh(NH3)5H2O]3+. The substitution rates are however about the same as for [Rh(TPPS)(H2O)2]3?, indicating that the overall charge on the complex plays only a minor role. The kinetic results indicate that dissociative activation is occurring in these reactions.  相似文献   

5.
Formation of cation radicals by pulse radiolysis of metalloporphyrins and chlorophyll a in 1,2-dichloroethane is reported Demetalation of the metalloporphyrin by radiolytically produced HC1 is also observed. Rate constants for demetalation of ZnTPP and Chl a are 1 1 × 108 and ≈ 3 × 108 M?1 S?1. Oxidation of Chl a by ZnTPP+ has a rate constant of ≈ 4× 109 M?1S?1.  相似文献   

6.
An analysis of the former works devoted to the reactions of I(III) in acidic nonbuffered solutions gives new thermodynamic and kinetic information. At low iodide concentrations, the rate law of the reaction IO + I? + 2H+ ? IO2H + IOH is k+B [IO][I?][H+]2k?B [IO2H][IOH] with k+B = 4.5 × 103 M?3s?1 and k?B = 240 M?1s?1 at 25°C and zero ionic strength. The rate law of the reaction IO2H + I? + H+ ? 2IOH is k+C [IO2H][I?][H+] – k?C [IOH]2 with k+C = 1.9 × 1010 M?2s?1 and k?C = 25 M?1s?1. These values lead to a Gibbs free energy of IO2H formation of ?95 kJ mol?1. The pKa of iodous acid should be about 6, leading to a Gibbs free energy of IO formation of about ?61 kJ mol?1. Estimations of the four rate constants at 50°C give, respectively, 1.2 × 104 M?3s?1, 590 M?1s?1, 2 × 109 M?2s?1, and 20 M?1 s?1. Mechanisms of these reactions involving the protonation IO2H + H+ ? IO2H and an explanation of the decrease of the last two rate constants when the temperature increases, are proposed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 647–652, 2008  相似文献   

7.
Decene-l was polymerized with the MgCl2/ethylebenzoate/p-cresol/AIEt3/TiCl4-AlEt3/methyl-p-toluate catalyst at 50° using an A/T ratio of 167 and a range of monomer concentration. The concentration of the two kinds of active sites are [Ti] = 12% and [Ti] = 4% of the total titanium. The rate constants of propagation are 24 M?1 s?1. Chain transfers to AIEt3, monomer, and by β-hydride elimination have rate constant values of 1.7 × 10?3 M?1 s?1, 1.34 × 10?2 M?1 s?1, and 1.7 × 10?2 s?1, respectively. Poly(decene-l) have relatively narrow MW which are unchanged during the course of a polymerization. Therefore, the active site concentrations in the CW catalyst for propylene and decene polymerization are identical and their rate constant values agree within a factor of 2. However, the rate of decene polymerization depends on fractional order of monomer concentration and decreases with the increase of activator concentration. Furthermore, the formation of metal polymer bonds has a rate independent of these concentrations. These kinetic behaviors are a manifestation of absorption processes of these species which are not seen in propylene polymerizations.  相似文献   

8.
The kinetics of the oxidation of functionalized organic compounds of atmospheric relevance by the hydroxyl radical (OH) was measured in the aqueous phase. Competition kinetics, using the thiocyanate anion (SCN?) as competitor, was applied using both a laser flash photolysis long path absorption (LP‐LPA) setup and a Teflon AF waveguide photolysis (WP) system. Both experiments were intercompared and validated by measuring the rate coefficients for the reaction between OH and acetone where values of k1 = (1.8 ± 0.4) × 108 M?1 s?1 were obtained with the WP system, which agrees very well with the rate constant of k1 = (2.1 ± 0.6) × 108 M?1 s?1 determined before by LP‐LPLA [1]. The following temperature dependencies of the rate constants (M?1 s?1) for the reactions of OH with ketones, dicarboxylic acids, and unsaturated compounds were obtained in Arrhenius' form: Reaction of OH with: methylisobutyl ketone (MIBK): k2 = (1.0 ± 0.1) × 1012

  相似文献   


9.
The photocurrent kinetics in acid solutions have been investigated. The diffusion coefficients of atoms H?((7±2)×10?5cm2s?1) and D?((4±1)×10?5cm2s?1) and OH? and OD? radicals ((1±0.3)×10?5cm2s?1) are found. The rate constants of capture of solvated electrons by H3O+ and D3O+ ions are identical and equal to (8±1)×109M?1s?1. From the shape of the kinetic curves it follows that electrochemical desorption of atomic hydrogen occurs from the adsorbed state. The rate constant of this process has been measured. It is shown that the rate constant of electrochemical desorption depends only slightly on the potential.  相似文献   

10.
For the rate constant of addition of tert-butyl radicals to acrylonitrile at T = 300 K in solution modulated ESR spectroscopy and muon spin rotation yield 106 M?1 s?1 and 2.4 × 106 M?1 s?1. The addition of pivaloyl radical to acrylonitrile proceeds with Arrhenius parameters log A/M?1 s?1 = 7.7 and Ea = 11.5 kJ/ mol. The results are discussed in terms of polar effects in radical addition reactions.  相似文献   

11.
The reaction of solvated electrons with baicalin in N2-saturated ethanol has been studied by pulse radiolysis. The results show that a solvated electron can add to baicalin and generate a baicalin radical anion with a maximum UV absorbance peak at 360 nm. Its molar extinction coefficient at this wavelength is 1.3×104 M−1 cm−1. The rate constant for the build-up of the baicalin radical anion is 1.3(±0.4)×1010 M−1 s−1. Decay of the radical anion is induced by a proton transfer reaction and a recombination reaction, which involves a pseudo-first-order reaction with rate constant 2.6(±0.4)×103 s−1 and a second-order reaction with rate constant 1.3(±0.2)×109 M−1 s−1. The effect of acetaldehyde on the decay of the baicalin radical anion was also investigated. Electron transfer between the baicalin radical anion and acetaldehyde was not observed, probably due to the low rate of electron transfer between the baicalin radical anion and acetaldehyde. Reactivity of the rutin, quercetin, baicalin and ethyl acrylate radical anions are also compared.  相似文献   

12.
The rate constants of self-reactions of ketyl radicals of acetophenone in n-heptane [2k = (3.2 ± 0.5) × 109 M?1 s?1] and diphenylaminyl radicals in toluene [2k = (3.3 ± 0.5) × 107 M?1 s?1] have been determined at 298 K using the flash photolysis technique. The rate constant of ketyl radicals is equal to the calculated diffusion constant and, therefore, this reaction is diffusion-controlled. The aminyl radical recombination rate is independent of the viscosity of the toluene/vaseline oil binary mixture (0.55 ? η ? 12 cP) and this reaction is activation-controlled. Reactivity anisotropy averaging due to the cage effect has been considered for ketyl and some other radicals. On the basis of the analysis it has been proposed that ketyl recombination involves formation of not only pinacol, but also iso-pinacols.  相似文献   

13.
A systematic fluorescence and flash photolytic investigation of a series of covalently linked fullerene / ferrocene based donor-bridge-acceptor dyads is reported as a function of the nature of the bridge between the donor site and acceptor site. The fluorescence of the investigated dyads 2rel = 0.17 × 10?4, 3rel = 0.78 × 10?4), 4rel = 1.5 × 10?4), 5rel = 0.7 × 10?4), and 6rel = 2.9 × 10?4) were substantially quenched, relative to N-methyl fulleropyrrolidine (1) (Φrel = 6.0 × 10?4). Photolysis of N-methyl fulleropyrrolidine (1) in toluene revealed formation of the excited singlet state which was followed by a rapid intersystem crossing to the excited triplet state. On the other hand, the fate of the excited singlet state of 2, 3, 4, 5, and 6 was found to be governed by rapid intramolecular quenching, with rate constants of 28×109 s?1, 6.9×109 s?1, and 3.4×109 s?1, 14×109 s?1, 2.3×109 s?1 respectively. The electron transfer process and the charge separation were confirmed by monitoring the characteristic π-radical anion bands at λmax = 400 and 1055 nm in degassed benzonitrile with τ1/2 = 1.8 μs (3) and 2.5 μs (4).  相似文献   

14.
Using Fourier transform infrared spectroscopy, the ethene yield from the reaction of C2H5 radicals with O2 has been determined to be 1.50 ± 0.09%, 0.85 ± 0.11%, and <0.1% at total pressures of 25, 50, and 700 torr, respectively. Additionally, the rate constant of the reaction of C2H5 radicals with molecular chlorine was measured relative to that with molecular oxygen. (1) A ratio k6/k7 = 1.99 ± 0.14 was measured at 700 torr total pressure which, together with the literature value of k7 = 4.4 × 10?12 cm3 molecule?1s?1, yields k6 = (8.8 ± 0.6) × 10?12 cm3 molecule?1s?1. Quoted errors represent 2σ. These results are discussed with respect to previous kinetic and mechanistic studies of C2H5 radicals.  相似文献   

15.
Azulene, which is isomeric with naphthalene, was studied to determine whether it behaves like a polycyclic aromatic hydrocarbon or an alkene in its gas-phase reactions with OH and NO3 radicals and O3. Using relative rate methods, rate constants for the reactions of azulene with OH and NO3 radicals and O3 of (2.73 ± 0.56) × 10?10 cm3 molecule?1 s?1, (3.9) × 10?10 cm3 molecule?1 s?1, and <7 × 10?17 cm3 molecule?1 s?1, respectively, were obtained at 298 ± 2 K. The observation that the NO3 radical reaction did not involve NO2 in the rate determining step indicates that azulene behaves more like an alkene than a polycyclic aromatic hydrocarbon in this reaction. No conclusive evidence for the formation of nitroazulene(s) from either the OH or NO3 radical-initiated reaction of azulene (in the presence of NOx) was obtained.  相似文献   

16.
The kinetics of the reaction of OH radicals with methyl, n-propyl, and n-butyl nitrite have been studied in a discharge flow system under pseudo first-order conditions. The OH radicals were generated by the reaction of H atoms with NO2 and the concentration of OH; monitored by resonance fluorescence, was followed as a function of time in an excess of each nitrite. Values of k(CH3ONO) = (0.6 ± 0.09) × 109 dm3 mol?1 s?1 k(n – C3H7ONO) = (1.39 ± 0.20) × 109 dm3 mol?1 s?1, and k(n – C4H9ONO) = (2.89 ± 0.43) × 109 dm3 mol?1 s?1 at 295 K were obtained. These results agree with previous relative rate measurements from this laboratory but the value for k (CH3ONO) is a factor of 7 greater than the value obtained by relative rate measurements elsewhere using a different OH source.  相似文献   

17.
It has been shown by ESR spectroscopy that the title reaction involves abstraction of hydrogen from the phosphite, since at ?10°C the reaction has a kinetic deuterium isotope effect, kH/kD, or ~3. The rate constant for hydrogen abstraction is c. 2 × 104 M?1 s?1. There is no significant addition of alkoxyl radicals to the phosphite.  相似文献   

18.
《Analytical letters》2012,45(14):1411-1422
Abstract

We used bromine generated and detected on the ring-dise electrode for the titration of aquo-alcoholic solution of dithiaalcanediol. The analysis of the ring current vs disc current curve provided a means of determination of the rate constant k of the second order homogeneous and fast reaction of bromine with each of the two sulfide groups of dithiaalcanediol. A value of (3+1)× 10?6M?1 s ?1 was found for k at 25°C.  相似文献   

19.
The antiradical activity of fullerene C60 was studied for the oxidation of 1,4-dioxane and styrene initiated by azobisisobutyronitrile and benzoyl peroxide as model reactions. The effective rate constants of the reaction of peroxyl radicals with fullerene C60 (k 7) and the stoichiometric inhibition factor (f eff) were determined in air ( $P_{O_2 }$ = 0.21 atm) and oxygen ( $P_{O_2 }$ = 1.0 atm). The rate of the liquid-phase oxidation of 1,4-dioxane does not depend on $P_{O_2 }$ , and the effective rate constant of inhibition is k 7 = (2.4 ± 0.2) × 104 L mol?1 s?1. Chain termination in the oxidation of styrene occurs when C60 reacts with both the peroxyl radicals (k 7 = (1.2 ± 0.1) × 103 L mol?1 s?1) and alkyl (k 8 = 1.07 × 107 L mol?1 s?1) radicals.  相似文献   

20.
The flash photolysis of aqueous solutions of rhodizonic and croconic acids has been studied in the presence and absence of electron acceptors. No transient absorption which could be identified with an excited state was observed with either anion. The rate of recovery of the ground state in the absence of additives was a first-order process with both acids and gave rate constants for deactivation of the excited state, kD, of 2.4 × 105 s?1 for rhodizonate and 2.8 × 105 s?1 for croconate. With croconate dianion in the presence of three acceptors, 4-nitrobenzylbromide, methylviologen, and biacetyl, a transient absorption was detected, with a maximum absorbance at 500 nm, and was tentatively identified with the monoanion radical, formed following electron transfer to the acceptor. From the rate of growth of the transient, rate constants for the rate of electron transfer to the acceptor were measured as follows: 4-nitrobenzylbromide: 2.8 × 109 M?1 s?1; methyl viologen: 3.7 × 1010 M?1 s?1; and biacetyl: 2.0 × 108 M?1 s?1. The significance of the measurements is discussed in relation to the mechanism proposed for the photochemical reactions of these dianions. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号