首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report absorption spectra from the ground state to the photoexcited triplet state of platinum porphin (PtP) in single crystals of n-octane (C8) and n-decane (C10) at 4.2 K, with and without a magnetic field. For PtP in C10 the same transition was studied in emission. From the experiments, values are derived of the spin-orbit coupling parameter Z, the crystal field splitting δ and the orbital angular momentum A for PtP in the two hosts: Z = 76 ± 2 cm?1 (C8, C10), δ = 71 ± 1 cm?1 (C8), 55 ± 1 cm?1 (C10) and A = 1.6 ± 0.1 (C8, C10). For the ratio of the in-plane and the z-polarized electric dipole transition moments we obtain ¦Mx,y¦/¦Mz¦=76± 0.3 (C8).  相似文献   

2.
The rotational spectrum of cyclohexanone has been observed within the frequency region from 18.0 to 40.0 GHz. Transitions in the ground state and six excited states have been assigned. The ground state rotational constants are (in MHz) A = 4195.316 +- 0.059, B = 2502.627 ± 0.005 and C = 1754.443 ± 0.005.From information obtained from relative intensity measurements, these excited states are estimated to be ~ 100 cm?1 above the ground state for the first excited state of the ring-bending mode and ~ 180 cm?1 for the first excited state of the ring-twisting mode.  相似文献   

3.
The microwave spectrum of 3-nitrothiophene has been studied in the frequency region 26.5–40.0 GHz. The rotational transitions of the ground state and the first six torsionally excited states have been assigned. The ground state rotational constants have been determined to be Ao=4622.61 ± 0.07 MHz, Bo = 1231.751 ± 0.001 MHz and Co = 973.062 ± 0.001 MHz. The planarity of the molecule has been demonstrated. The first torsional frequency and the barrier to internal rotation of the nitro group have been estimated as 60 cm?1 and 3.8 kcal/mole, respectively.  相似文献   

4.
The microwave spectra of bicycle [2.2.1] hepta-7-one (I), bicyelo [2.2.1] hept-2-en-7-one (II), and exo-5,6-bisdeuteriobicyclo [2.2.1] hept-2-en-7-one (III) have been recorded in the region between 26.5 and 40.0 GHz. The rotational constants in the order A, B, C for the title compounds are 2773.24±0.31, 2301.74±0.04, and 2133.96±0.02 (I); 2979.22±0.08, 2418.60±0.01, and 2235.51±0.01 (II); and 2789.67±0.06, 2385.24±0.01, and 2150.60±0.01 (III). The rotational constants of four vibrationally excited states were also determined for (II). Quadratic Stark effect measurements on the 716 ← 615 transition of (I) gave ¦μa¦=2.99±0.03. Similar measurements on two 5 ← 4 and 4 ← 3 transitions of (II) gave ¦μa¦=2.88±0.03, ¦μb¦=0.39±0.03, ¦μc¦=0, and ¦μtotal¦=2.91±0.04.  相似文献   

5.
The kinetics of depletion of ground state Ti(a3F) and electronically excited state Ti(a5F) upon interactions with CH4, C2H2, C2H4, and C2H6 are studied in a fast-flow reactor at a He pressure of 0.70 Torr. No depletion of ground state Ti(a3F) was observed upon interaction with all hydrocarbons studied here. Two alkanes, CH4 and C2H6, were also quite inert for depletion of the excited state Ti(a5F), On the other hand, C2H2 and C2H4 deplete the excited state Ti(a5F) very efficiently. Rate constants were determined to be (266 ± 86) and (476 ± 88) × 10?12 cm3s?1 for Ti(a5F) + C2H4 and Ti(a5F) + C2H2, respectively. These large rate constants compared with the ground state Ti were explained by an electron donor-acceptor interaction model that works in the interaction between C2H4 or C2H2 and the excited state with unfilled 4s orbital.  相似文献   

6.
A method constructing symmetry-adapted bonded Young tableau bases is proposed, based on the symmetry properties of bonded tableaus and the projection operator associated with a point group. Several examples including the ground states and π excited states of O3, O3, O3+, and C3 are shown for instruction to construct the symmetrized valence bond (VB) wave function. Excitation energies of transitions from the ground states to π excited states of O3, C3H5, and C3 are calculated with an optimized symmetrized valence bond wave function in the σ–π separation approximation. Good agreement between the VB and experimental excitation energies is observed. The bonding features of the ground state and the first π excited singlet and triplet states for S3 are discussed according to bonding populations from VB calculations. Both the singlet-biradical and the dipole structures have significant contributions to the ground state X 1A1 of S3, while the excited state 1 1B2 is essentially composed of the dipole structures, and the 1 3B2 excited state is comprised from a triplet-biradical structure. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 1–7, 1998  相似文献   

7.
The microwave spectrum of isobutene has been recorded from 10 to 35 GHz. From the analysis of the ground and first two excited torsional state splittings, the following internal rotation parameters were calculated: V3 = 2170 cal mol.?1, V'12 = ?210 cal. mol.?1, Iα = 3.18amu Å2 and angle (methyl-top to b-axis) 58.21°. Centrifugal distortion parameters were also obtained for the ground state.  相似文献   

8.
The microwave spectra of three rotational isomers of epifluorohydrin are Presented. The ground and 3 excited torsional states of one of the two gauche rotamers (III), and the ground states of the other gauche and cis rotamers (I & II), have been observed. The values of the ground state rotational constants. A, B, and C for rotamers I, II and III are 14 662.8, 3129.4, 2863.3; 10 645.8, 4050.2, 3679.1; and 14 833.1, 3210.2, 2933.9 MHz. The gaseous phase dipole components for the most abundant rotamer (III) are μa = 0.99 ± .02, μb = 2.90 ± .01 and μc = 0.0 ± .3, giving μ = 3.08 ± .02 D.  相似文献   

9.
《Chemical physics letters》1985,117(6):543-549
The μa R-branch rotational spectra of the ground and first excited states of the three lowest vibrational modes of the H2O…HF heterodimer have been observed in the frequency range 40–80 GHz. Coriolis perturbations between the ground vibrational state (υ = 0) and the first excited state of the out-of-plane bending vibration (υβ(0) = 1) show that for a given J the K−1 = 2 levels of υβ(0) = 1 lie approximately 3 cm−1 above the K−1 = 3 levels of υ = 0. The vibrational separation between these two states is estimated to be 70±3 cm−1. This value is consistent with those determined by other methods and reinforces the conclusion that νβ(0) is governed by a double-minimum potential energy function with the quantitative form previously published. A perturbation is also observed in the first excited state of the hydrogen-bond stretching vibration υσ = 1. This manifests itself as a large, negative centrifugal distortion constant DJK = −8.5 MHz compared with 2 MHz in the other vibrational states.  相似文献   

10.
The microwave spectrum of 1,1-difluoro-l-silacyclopent-3-ene has been recorded from 26.5 to 40.0 GHz. Only A-type transitions were observed. The R-branch assignments have been made for the ground state and the first three excited states of the ring puckering vibration. It is shown that the five-membered ring structure is planar from the values of the components of the dipole moment, as well as from the value of the inertial defect as a function of the ring puckering quantum number. From the relative intensity measurements, it is concluded that the first excited state of the ring puckering vibration has a frequency of 38 ±7 cm?1 and that the vibration is nearly harmonic. The components of the dipole moment were determined by the Stark effect to be μa = 2.02 ±0.06 D, μb = 0, and μc = 0.0 ±0.09 D. All of the observed data are consistent with a molecule of C2v symmetry and the possible reasons for this structure are discussed.  相似文献   

11.
The relative cross section has been measured in the threshold regions of the following transitions: C?(4S) + hv → C3P0,1,2) + e? and C?(2D) + hv → C(1D) + e?. The electron affinity of carbon is determined EA(C) = 1.2629 ± = 0.0003 eV, and the binding energy of the metastable C?(2D) state with respect to the C(3P0) ground state is 0.033 ± 0.001 eV.  相似文献   

12.
The ground state and 1B2 excited state of Cu(C2H4)+ and of CuX(C2H4) (X  F, Cl) have been investigated by the Hartree-Fock-Slater (HFS) method. The main metal-ligand interactions in the ground state are ethene π → Cu 4s donation and Cu 3dπ → ethene π* backdonation, which have comparable contributions to the metal-ligand bond strength. The excitation of CuX(C2H4) does not involve an alkene π → metal charge transfer (LMCT), but instead is metal 3d → alkene π* charge transfer (MLCT) in character. The implications for the photochemistry of olefin-copper(I) complexes are discussed.  相似文献   

13.
For studying the photochemistry of carbonyl chromophores in the side-chain, methacrylic esters of para-acylated 2-phenoxyethanols (CH2 = C(CH3) · CO · O · CH2 · CH2O · C6H4 · CO · R), soluble copolymers with styrene and soluble homopolymers were prepared. Comparison of low temperature emission spectra of model compounds, homopolymers and copolymers doped in polystyrene film indicated some interaction between the excited and the ground state structural units in homopolymers. Quantum yield of main chain scission of copolymers of styrene with monomers 1–3 (R = CH3, C2H5, C6H5) at 313 nm radiation in benzene were about 10?4; the cross-linking was the main reaction for copolymer styrene/monomer 4 (R = C6H5CH2). On exposure of copolymers styrene/monomers 1–4 and polystyrene doped with model compounds in film to 313 nm radiation in air, accelerated photo-oxidation occurs as well as cross-linking. Only chromophores of monomers 3 and 4 were effective as sensitizers of photochemical addition of maleic anhydride to benzene by radiation with γ > 340 nm. The difference in the efficiency between model compounds and copolymers on the one hand and a homopolymer on the other hand is due to self-quenching.  相似文献   

14.
The structure of 1,3-dichloropropyne has been studied by gas electron diffraction. The resulting parameters ra have been converted into rαo distances. A geometrical structure has been fitted to these internuclear distances. Thus the following parameters (rαo) have been determined: r(C1-Cl1) = 1.629 (10) A, r(C1C2) = 1.201 (13) Å, r(C3-Cl2) = 1.791 (6) A, ∠(C2-C3-Cl2) = 111.1° (1.0°), ∠(H-C3-H) = 98.8° (3.1°), ∠(C2-C3-H) = 108.7° (3.2°). ∠(Cl1-C1C2) = 176.6° (1.1°), ∠(C1C2-C3) = 182.7° (1.4°). Inconsistencies have been detected between our results and the rotational constants reported by Günther and Zeil. Discussion of the problem including rotational constants of the first excited vibrational state leads to the conclusion that the observed discrepancies are due to temperature effects.  相似文献   

15.
Thermodynamic measurements by the electromotive force method were made on the binary intermetallic phases URu3 and U3Ru5 and on the ternary carbides URu3C0.7 and U2RuC2 of the URu and the URuC systems between 950 and 1200 K using galvanic cells with CaF2 single crystal electrolytes: U, UF3¦CaF2¦UF3, URu3, Ru; U, UF3¦CaF2¦UF3, U3Ru5, URu3; Ru, URu3, UF3¦CaF2¦UF3, URu3C0.7, Ru, C; U, UF3¦CaF2¦UF3, URu3C0.7, U2RuC2, C. The Gibbs energies of formation of URu3, U3Ru5, URu3C0.7 and U2RuC2 were evaluated from the measured electromotive force which give fΔGoURu3〉 = −199 100 + 35.9 T J mol−1fΔGoU3Ru5〉 = −398 600 + 43.6 T J mol−1fΔGoURu3C0.7〉 = −192 600 + 2.5 T J mol−1fΔGoU2RuC2〉 = −380 200 + 52.5 T J mol−1 The implications of these thermodynamic data for the behaviour of the fission product ruthenium in irradiated carbide fuels are discussed.  相似文献   

16.
The microwave spectrum of propionyl chloride has been investigated in the region 18.0–40.0 GHz, and transitions due to a cis conformer have been assigned. This form has a heavy atom planar configuration and the methyl group and the carbonyl oxygen atom are cis to each other. Using the substitution structures of propionic acid and acetyl chloride as molecular models for the propionyl chloride molecule, good agreement is found between observed and calculateò effective rotational constants. For the 35Cl species satellite spectra assigned to the first four excited states of the C-C torsional mode have been observed together with the first excited state of the methyl torsional mode. The ground state spectrum has also been assigned for the 37Cl species. Relative intensity measurements yielded the lowest C-C torsional vibration frequency of 86 ± 10 cm?1. The CH3 internal rotation frequency was found to be 197 cm?1. Nuclear quadrupole coupling constants were determined for the ground state of the 35Cl and 37Cl species. From observed A-E splittings of bQ-branch transitions of the first excited state of the methyl torsional mode a barrier to internal rotation was estimated to be V3 = 2480 ± 40 cal mol?1 (867 ± 14 cm?1).  相似文献   

17.
The microwave spectrum of trans-1-fluoro-2-butene, trans-(CH3)HCCH(CH2F), has been recorded in the region of 18.0–39.0 GHz. Both a-type R- and b-type Q-branch assignments have been made for the ground and first two vibrationally excited states of the asymmetric torsion for the gauche (anticlinal) conformer. The ground state rotational constants for this conformer are found to have the following values: A = 19,938.33±0.48, B = 2071.37±0.01, C = 2022.17±0.01 MHz. From an analysis of the internal rotational splittings of the Q-branches, the three-fold rotational barrier for the methyl group is determined to be 596±7 cm−1 (1.70±0.02 kcal/mol). From the Stark effect the dipole moment components for the gauche conformer were determined to be |μa| = 1.86±0.01, |μb| = 1.16±0.01, |μc| = 0.31±0.05, and |μt = 2.21±0.01 D. The fundamental asymmetric torsion for the cis (synclinal) conformer has been observed in the far-IR spectrum of the vapor at 123.95 cm−1 whereas that for the gauche conformer has been determined to occur at 82.8±5 cm−1 based on relative intensity measurements obtained from the microwave spectrum. From these data the potential function which governs the internal rotation of the asymmetric top has been determined and the following potential constants have been evaluated: V1 = −191±10, V2 = 598±10, V3 = 786±13, V4 = 59±5, and V6 = 79±5 cm−1. These data are consistent with the more stable conformer having the fluorine atom cis (synclinal) to the double bond and lying 300±33 cm−1 (858±94 cal/mol) lower in energy than the gauche rotamer. Utilizing ab initio calculations with the MP2/6-31G* basis set and the three rotational constants, r0 structural parameters are estimated. Also, the barriers to conformer interconversion have been calculated with the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets. All of these results have been compared to the similar quantities of some corresponding molecules.  相似文献   

18.
The density functional theory (DFT) and the complete active space self‐consistent‐field (CASSCF) method have been used for full geometry optimization of carbon chains C2nH+ (n = 1–5) in their ground states and selected excited states, respectively. Calculations show that C2nH+ (n = 1–5) have stable linear structures with the ground state of X3Π for C2H+ or X3Σ? for other species. The excited‐state properties of C2nH+ have been investigated by the multiconfigurational second‐order perturbation theory (CASPT2), and predicted vertical excitation energies show good agreement with the available experimental values. On the basis of our calculations, the unsolved observed bands in previous experiments have been interpreted. CASSCF/CASPT2 calculations also have been used to explore the vertical emission energy of selected low‐lying states in C2nH+ (n = 1–5). Present results indicate that the predicted vertical excitation and emission energies of C2nH+ have similar size dependences, and they gradually decrease as the chain size increases. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

19.
The microwave spectrum of γ-butyrolactone has been recorded from 12.4 to 40.0 GHz. Both A-type and B-type transitions were observed. The R-branch assignments have been made for the ground state and the first two excited states of the ring-puckering and the first excited state of the ring twisting modes. It is shown that the ring skeleton is non-planar from the magnitude of the μc component of the dipole moment as well as from the value of Ic?(Ia+Ib). From the relative intensity measurements of the ground and the excited state, the ring twisting mode appears to be governed by a double minimum potential. The dipole moment was determined to be 4.27±0.03 D with components of μa = 4.04±0.03 D, μb = 1.42±0.03 D, μc = 0.33±0.02 D. From an investigation of the Raman spectrum of the gas, the ring puckering vibration was found to have a frequency of 148 cm?1, whereas the ring twisting mode was found at 225 cm?1.  相似文献   

20.
The enthalpy of the combustion of C60Br24 · 2Br2 has been measured using a rotating-bomb calorimeter as follows: Δ c H 0(C60Br24 · 2Br2, cr) = (?25986 ± 166) kJ/mol. The result has been used to calculate the standard enthalpy of formation, ΔfH 0(C60Br24 · 2Br2, cr) = (2375 ± 166) kJ/mol. The enthalpies of formation of C60Br24 (cr) and dissociation of the C-Br bond have been estimated. The latter value has been compared with enthalpies for the C-X (X = H, F, Cl, Br) bonds in fullerene derivatives and organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号