首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The semiempirical quantum chemical MNDO and AMI methods were used to determine the equilibrium geometries and electron properties of molecules of perfluoroalkyl halides (RFX): CF3X, CF3CF2X, (CF3)2CFX, (CF3)3CX for X=Cl, Br, and I. It was determined that the effective charge on the Cl atom in RFCl is negative, positive on the I atom in RFI, and depends on RF for the Br atom in RFBr. The CF3 group can act as either an electron acceptor or donor in various perfluoroalkyl halides. The strongest C–I bond in the perfluoroalkyl halides occurs with a tertiary RF group.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1059–1063, May, 1990.  相似文献   

2.
A parametric study of the etching of Si and SiO2 by reactive ion etching (RIE) was carried out to gain a better understanding of the etching mechanisms. The following fluorocarbons (FCs) were used in order to study the effect of the F-to-Cl atom ratio in the parent molecule to the plasma and the etching properties: CF4, CF3Cl, CF2Cl2, and CFCl3 (FC-14, FC-13, FC-12, and FC-11 respectively). The Si etch rate uniformity across the wafer as a function of the temperature of the wafer and the Si load, the optical emission as a function of the temperature of the load, the etch rate of SiO2 as a function of the sheath voltage, and the mass spectra for each of the FCs were measured. The temperature of the wafer and that of the surrounding Si load strongly influence the etch rate of Si, the uniformity of etching, and the optical emission of F, Cl, and CF2. The activation energy for the etching reaction of Si during CF4 RIE was measured. The etch rate of Si depends more strongly on the gas composition than on the sheath voltage; it seems to be dominated by ion-assisted chemical etching. The etching of photoresist shifted from chemical etching to ion-assisted chemical etching as a function of the F-to-Cl ratio and the sheath voltage. The etch rate of SiO2 depended more strongly on the sheath voltage than on the F-to-Cl ratio.  相似文献   

3.
The reactive ion etching of GaAs, InP, InGaAs, and InAlAs in CF3Br/Ar discharges was investigated as a function of both plasma power density (0.56-1.3 W - cm–2) and total pressure (10-40 mTorr) The etch rate of GaAs in 19CF3Br:1Ar discharges at 10 m Torr increases linearly with power density, from 600 Å min–1 at 0.56 W · cm–2, to 1550 Å · min at 1.3 W · cm–2. The in-based materials show linear increases in etch rates only for power densities above – 1.0 W · cm–2. These etch rates are comparable to those obtained with CCI2F2:O2 mixtures under the same conditions. Smooth surface morphologies and vertical sidewalls are obtained over a wide range of plasma parameters. Reductions in the near-surface carrier concentration in n-type GaAs are evident for etching with power densities of >0.8 W cm–2, due to the introduction of deep level trapping centers. At 1.3 W· cm–2, the Schottky barrier height of TiPtAu contacts on GaAs is reduced from 0.74 to 0.53 eV as a result of this damage, and the photoluminescent intensity from the material is degraded. Alter RIE, we detect the presence of both F and Br on the surface of all of the semiconductors. This contamination is worse than with CCl2F2-based mixtures. High-power etching with CF3Br/Ar together with Al-containing electrodes can lead to the presence of a substantial layer of aluminum oxide on the samples if the moisture content in the reactor is appreciable.  相似文献   

4.
Optical emission (180–800 nm) and mass spectroscopy have been used to study the CF4, CF4+O2, C2F6, C2F6+H2, CF3Cl, and C2F4 decomposition in radio-frequency discharges. The analysis of the stable and unstable discharge products has allowed the suggestion of decomposition channels for the various gases and to classify the fluorinated gases according to their predominant etching or polymerizing characteristics on the basis of the active species present in the plasma. A new broad emission continuum centered at =290 nm (FWHM=66 nm) has also been identified and it has been tentatively assigned to CF+ 2.  相似文献   

5.
Fluoropropionic acids of the general formula CF3CXYCO2H ( X = F, Cl, Br ; Y = F, Cl, Br, H ) were obtained by the sonochemically promoted reaction of fluorohalogenoethanes CF3CXYZ ( Z = Cl, Br ) with zinc and carbon dioxide. Penta- and tetrafluoroethanes ( X = Y = F and X = F, respectively ) gave good yields ( 35 – 47 % ) of the acids; with trifluoro derivatives the yields were substantially lower. Hydrogenolysis of the CCl and CBr bonds in CF3CFClCO2H and CF3CFBrCO2H afforded 2,3,3,3-tetrafluoropropionic acid.  相似文献   

6.
Photoelectron Spectra and Molecular Properties. 132. Trifluoromethylsulfane and Derivatives F3CSX (X ? CF3, Cl, Br, I) The He(I) photoelectron spectra of trifluoromethylsulfane F3CSH and its derivatives F3CSX (X ? CF3, Cl, Br, I) are assigned by Koopmans' correlations, IE = ?ε, with MNDO eigenvalues, by radical cation state comparison and based on resolved vibrational fine structures, which can' be discussed by MNDO FORCE calculations. The spin/orbit splitting in F3CSI can be approximated by additional ITEREX-85 calculations. Gasphase thermolysis of the trifluoromethylhalogensulfanes F3CSX at 10?4 mbar yields decomposition temperatures, which decrease from X ? Cl to I, and as fragmentation products of presumably radical intermediates, in addition to the respective halogens X2 and F2C?S, also F3CX as well as S2 and CS2 (X ?Cl, Br) are PE spectroscopically detected.  相似文献   

7.
Force constants of [Hg(CF3)2], [Hg(CCl3)2], [Hg(CF3)X] (X = Cl, Br, or I) and [Hg(CCl3)X] (X = Cl or Br) have been calculated using a valence force field and wavenumber data from solutions. The potential energy distributions show substantial mixing between the symmetrical stretching and umbrella deformation coordinates of the trihalomethyl groups. The high degree of mixing of HgC and HgX stretching coordinates in [Hg(CF3)Br] and [Hg(CF3)I] accounts for the discontinuous frequency and intensity trends in the [Hg(CF3)X] series.The results are discussed in comparison with methylmercury and other trifluoromethyl systems.  相似文献   

8.
The following zinc(II), cadmium(II) and mercury(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (L) have been prepared and investigated by conductometric,IR and Raman methods: MX2L2 (M = Zn, X = Cl, Br(CHCl3, I(CHCl3, CF3COO; M = Cd, X = Cl, Br CF3COO; M = Hg, X = Cl, CF3COO), Cd2I4L3, Hg3X6L2 (X = Cl, Br), Hg3X6L4(X = Br, I), MX2L4·6H2O (M = Zn, Cd, X = CIO4, BF4; M = Hg, X = CIO4. The ligand is principally bonded through the unprotonated nitrogen atom and in some complexes also through the carbonylic oxygen atom. The zinc halide complexes are tetrahedrally coordinated, the trifluoroacetate ion is coordinated as a monodentate ligand.  相似文献   

9.
The comparative study of etching characteristics and mechanisms for TiO2 thin films in CF4 + Ar, Cl2 + Ar and HBr + Ar inductively coupled plasmas was carried out. The etching rates for TiO2, Si and photoresist were measured as functions of gas mixing ratios at fixed gas pressure (10 mTorr), input power (800 W) and bias power (300 W). It was found that the maximum TiO2 etching rate of ~130 nm/min correspond to pure CF4 plasma while an increase in Ar fraction in a feed gas results in the monotonic non-linear decrease in the TiO2 etching rates in all three gas mixtures. Plasma diagnostics by Langmuir probes and 0-dimensional (global) plasma modeling supplied the data on the densities of plasma actives specie as well as on particle and energy fluxes to the etched surface. It was concluded that, under the given set of experimental conditions, the TiO2 etching kinetics in all gas systems correspond to the ion-assisted chemical reaction with a domination of the chemical etching pathway. It was found also that the differences in the absolute TiO2 etching rates correlate with the energy thresholds for TiO2 + F, Cl or Br reaction, and the reaction probabilities for F, Cl and Br atoms exhibit the different changes with the ion energy flux according to the volatility of corresponding etching products.  相似文献   

10.
During the etching of AZ 1350 photoresist in O2 and O2/CF4 discharges, ground-state concentrations of atoms (O, F, and H), and small radicals (OH, HO2, RO2) were measured in the discharge afterglow by EPR spectroscopy. In the case of CF4/O2 discharges, the dependence of O and F atom concentrations on the etch time reflects both surfäce oxidation and fluorination reactions in accordance with existing etch models. In the case of high-rate resist etching in pure O2 discharges, high concentrations of product radicals (H, OH and HO2) were detected and compared with resist free O2/H2O discharges. Kinetic modeling of the afterglow reactions reveals that the mean lifetime and, accordingly, the diffusion length of the etchant species O(3P) is drastically reduced in rapid reactions with OH and HO2. The results are used to simulate both etch homogeneity and the loading effect in a simple etch model.  相似文献   

11.
The mono (bistrifluoromethylamino-oxy)alkanes (CF3)2NOCXYZ (X = Y = F, Z = Cl; X = H, Y = F or Cl, Z = CH3; X = Y = F, Z = CH3; X = H, Y = Cl or Br, Z = CF3; X = Cl, Y = Br, Z = CF3) have been synthesised by treatment of appropriate halogenoalkanes, CHXYZ, with bistrifluoromethyl nitroxide. The 1,2-bis(bistrifluoromethylamino-oxy)alkanes (CF3)2NOCH2CXYON(CF3)2 were obtained as by-products in the reactions involving the ethanes CH3CHXY (X = H, Y = F or Cl; X = Y = F); these products, like their analogues (CF3)2NOCHFCF2ON(CF3)2 and (CF3)2NOCH2CCl2ON(CF3)2, were also prepared via attack of bistrifluoromethyl nitroxide on the corresponding ethenes.  相似文献   

12.
Electron Cyclotron Resonance (ECR) discharges of CCl2F2 or PCl3 have been used to etch InP, InAs, InSb, InGaAs and AlInAs. The etch rates of these materials increase linearly with additional RF power level applied to the cathode and are in the range 50–180 Å · min–1 for 50 W (DC bias 308 V), 10 mTorr, 38 CCl2F2/2 O2 plasmas. The etch rates fall rapidly with increasing pressure or increasing O2-to-CCl2F2 ratio. Polymeric surface residues up to 40 Å thick are found on all of these semiconductors when using Freon-based gas mixtures. Etching at practical rates is possible with only 100 V self-bias when using PCl3 discharges, and the addition of microwave excitation under these conditions enhances the etch rates by factors of 2–9. At higher self-biases (300 V) etch rates of 3500–8000 Å · min–1 are possible with PCl3 although the surface morphologies are significantly rougher and the etching less anisotropic than with CCl2F2-based mixtures.  相似文献   

13.
Calculations were carried out using the semiempirical quantum chemical AMI method for anion radicals (AR) of the perfluoroalkyl halides (RFX): CF3X, CF3CF2X, (CF3)2-CFX, and (CF3)3CX for X=Cl, Br, and I. All the AR's studied are thermally stable. The electron affinity of the perfluoroalkyl halides, and consequently, the thermal stability of their AR's increases in the series from F-methyl to F-tertbutyl halides and from the chlorides to bromides and iodides. During formation of an AR the spin density is preferentially localized on the * orbital of the C–X bond which leads to an increase in the distance between these atoms. Dissociation of the AR of tert-perfluorobutyl iodide to a perfluorocarbanion and an I atom is thermodynamically more favorable than dissociation with formation of a perfluoroalkyl radical and I.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1064–1068, May, 1990.  相似文献   

14.
The processes of vibrational relaxation and unimolecular dissociation of the perfluoromethyl halides CF3Cl, CF3Br, and CF3I have been studied in the shock tube with the laser-schlieren technique. Vibrational relaxation was resolved in pure CF3Cl and CF3Br (400–484 K and 400–500 K, respectively), and in the mixtures; 2% CF3Cl/Kr (500–1000 K), 10% CF3Cl/Kr (440–670 K), 4% CF3Br/Kr (450–850 K), and 2% CF3I/Kr (620–860 K). Relaxation in the pure gases is extremely rapid, but shows a well-resolved, accurately exponential decay which provides very precise relaxation times in close agreement with ultrasonic results. Relaxation times as short as 0.1 μs-atm can be resolved, showing the method has a resolution within a factor 2–3 of the best ultrasonic methods. Relaxation dilute in rare gas shows a complex double exponential behavior consistent with a two-stage series process. Rates of CF3(SINGLEBOND)X fission in these mixtures were measured over 1800–3000 K, P<0.55 atm, for CF3Cl; 1600–2500 K, P<0.55 atm, in CF3Br; and 1260–2100 K, P<0.34 atm, in CF3I. Rates for dissociation were derived from a full profile modeling using a secondary mechanism of six CF3 reactions. RRKM analysis showed all dissociations to lie near the low pressure limit. Using literature barriers, these rates are best fit with (ΔE)all=−270 cm−1 for CF3Cl, 〈ΔEdown=0.3 T for CF3Br, and 〈ΔEdown=800 cm−1 for CF3F. All these transfers are on the large side, similar to those found in other halogenated methanes. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
The mass spectral fragmentation patterns at 20 eV of twelve compounds of the type CF3CXYCF3 (X, Y =F, Cl, Br, I, H) and five compounds of the type CF3 CX2 Y (X, Y= F, Cl, Br) were analyzed. It was noted that the frequency of carbon–helogen and carbon–carbon bond cleavage was quite dependent on the substituents X and Y.  相似文献   

16.
Positive and negative ion fast atom bombardment mass spectra of tetraalkylammonium halide salts (NR4X, where X = Cl, Br, I and NR4 = NMe4, NEt4) have been studied and intense cluster ion formation has been observed. The cluster ion intensity distributions were found to show enhancements at certain cluster numbers (n). The negative cluster ions of NMe4X salts showed anomalous ion intensity regions, which differed from both the positive cluster ions of all NR4X salts and also the corresponding negative clusters of NEt4X salts. The influence of anion and cation size on cluster ion formation and abundances has been studied and it has been established that smaller anion and cation size favours the formation of larger cluster ions. The possible structures of the cluster ions exhibiting relative increased stabilities are discussed.  相似文献   

17.
An extension of the scope of the Grignard reaction of fluorinated compounds is reported. Fluorohalogenoethanes of the general formula CF3CXYZ ( X = F,Cl,Br ; Y,Z = Cl,Br ) were found to undergo smoothly the metal-halogen exchange reaction with alkyl- or aryl-magnesium halides at low temperature to yield organometallic compounds CF3CXYMgHal. The Grignard compounds were reacted with a series of aldehydes and ketones to give the corresponding alcohols in good to moderate preparative yields.  相似文献   

18.
Summary By inhibiting the copper(II) assisted TPT (TPT = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) hydrolysis, monomeric and dimeric copper(II) complexes having as general formulae Cu(TPT)X, · nH2O (X = Cl, Br, NCS, NCO or N3) and [Cu(TPT)X]2(PF6)2 · nH2O (X = Cl, Br, NCS or N3) have been synthesized and characterized by i.r., electronic and e.p.r. spectra, x-ray powder diffraction and analytical data. Spectroscopic results indicate five-coordinate geometry around the copper(II) ion, intermediate between trigonal-bipyramid and square-pyramid structures. The half-field absorption in the MS = 2 region of powdered X-band e.p.r. spectra has been observed for the dimeric species.  相似文献   

19.
A chemical flux of sulfur hexafluoride (SF6) in conjunction with low-energy Ar-ion bombardment has been used for chemically assisted ion beam etching (CAIBE) of silicon and silicon dioxide. The study has shown a large degree of independent control over the selectivity and anisotropy in dry etching. The total etch rate could be controlled by varying either the Ar-ion milling parameters or the chemical flux of SF6. Etch rate enhancement of 7–8 for silicon and 3–4 for silicon dioxide have been obtained over pure physical etching.  相似文献   

20.
A systematic study has been performed of the dry etching characteristics of GaAs, Al0.3Ga0.7As, and GaSb in chlorine-based electron cyclotron resonance (ECR) discharges. The gas mixtures investigated were CCl2F2/O2, CHCl2F/O2, and PCl3. The etching rates of all three materials increase rapidly with applied RF power, while the addition of the microwave power at moderate levels (150 W) increases the etch rates by 20–80%. In the microwave discharges, the etch rates decrease with increasing pressure, but at 1 m Torr it is possible to obtain usable rates for self-bias voltages 100 V. Of the Freon-based mixtures, CHCl2F provides the least degradation of optical (photoluminescence) and electrical (diode ideality factors and Schottky barrier heights) properties of GaAs as a result of dry etching. Smooth surface morphologies are obtained on all three materials provided the microwave power is limited to 200 W. Above this power, there is surface roughening evident with all of the gas mixtures investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号