首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the well-known projected eigenvalue bound, and appears to be competitive with existing bounds in the trade-off between bound quality and computational effort. Received: February 2000 / Accepted: November 2000?Published online January 17, 2001  相似文献   

2.
The paper extends prior work by the authors on loqo, an interior point algorithm for nonconvex nonlinear programming. The specific topics covered include primal versus dual orderings and higher order methods, which attempt to use each factorization of the Hessian matrix more than once to improve computational efficiency. Results show that unlike linear and convex quadratic programming, higher order corrections to the central trajectory are not useful for nonconvex nonlinear programming, but that a variant of Mehrotra’s predictor-corrector algorithm can definitely improve performance. Received: May 3, 1999 / Accepted: January 24, 2000?Published online March 15, 2000  相似文献   

3.
We present a branch and cut algorithm that yields in finite time, a globally ε-optimal solution (with respect to feasibility and optimality) of the nonconvex quadratically constrained quadratic programming problem. The idea is to estimate all quadratic terms by successive linearizations within a branching tree using Reformulation-Linearization Techniques (RLT). To do so, four classes of linearizations (cuts), depending on one to three parameters, are detailed. For each class, we show how to select the best member with respect to a precise criterion. The cuts introduced at any node of the tree are valid in the whole tree, and not only within the subtree rooted at that node. In order to enhance the computational speed, the structure created at any node of the tree is flexible enough to be used at other nodes. Computational results are reported that include standard test problems taken from the literature. Some of these problems are solved for the first time with a proof of global optimality. Received December 19, 1997 / Revised version received July 26, 1999?Published online November 9, 1999  相似文献   

4.
In this paper, we consider a special class of nonconvex programming problems for which the objective function and constraints are defined in terms of general nonconvex factorable functions. We propose a branch-and-bound approach based on linear programming relaxations generated through various approximation schemes that utilize, for example, the Mean-Value Theorem and Chebyshev interpolation polynomials coordinated with a Reformulation-Linearization Technique (RLT). A suitable partitioning process is proposed that induces convergence to a global optimum. The algorithm has been implemented in C++ and some preliminary computational results are reported on a set of fifteen engineering process control and design test problems from various sources in the literature. The results indicate that the proposed procedure generates tight relaxations, even via the initial node linear program itself. Furthermore, for nine of these fifteen problems, the application of a local search method that is initialized at the LP relaxation solution produced the actual global optimum at the initial node of the enumeration tree. Moreover, for two test cases, the global optimum found improves upon the solutions previously reported in the source literature. Received: January 14, 1998 / Accepted: June 7, 1999?Published online December 15, 2000  相似文献   

5.
Motivated by weakly convex optimization and quadratic optimization problems, we first show that there is no duality gap between a difference of convex (DC) program over DC constraints and its associated dual problem. We then provide certificates of global optimality for a class of nonconvex optimization problems. As an application, we derive characterizations of robust solutions for uncertain general nonconvex quadratic optimization problems over nonconvex quadratic constraints.  相似文献   

6.
7.
8.
We present an algorithm for finding approximate global solutions to quadratically constrained quadratic programming problems. The method is based on outer approximation (linearization) and branch and bound with linear programming subproblems. When the feasible set is non-convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility tolerance. A numerical example illustrates the procedure. Computational experiments with an implementation of the procedure are reported on bilinearly constrained test problems with up to sixteen decision variables and eight constraints.This research was supported in part by National Science Foundation Grant DDM-91-14489.  相似文献   

9.
We analyze perturbations of the right-hand side and the cost parameters in linear programming (LP) and semidefinite programming (SDP). We obtain tight bounds on the perturbations that allow interior-point methods to recover feasible and near-optimal solutions in a single interior-point iteration. For the unique, nondegenerate solution case in LP, we show that the bounds obtained using interior-point methods compare nicely with the bounds arising from using the optimal basis. We also present explicit bounds for SDP using the Monteiro-Zhang family of search directions and specialize them to the AHO, H..K..M, and NT directions. Received: December 1999 / Accepted: January 2001?Published online March 22, 2001  相似文献   

10.
In this paper, we introduce the notion of a self-regular function. Such a function is strongly convex and smooth coercive on its domain, the positive real axis. We show that any such function induces a so-called self-regular proximity function and a corresponding search direction for primal-dual path-following interior-point methods (IPMs) for solving linear optimization (LO) problems. It is proved that the new large-update IPMs enjoy a polynomial ?(n log) iteration bound, where q≥1 is the so-called barrier degree of the kernel function underlying the algorithm. The constant hidden in the ?-symbol depends on q and the growth degree p≥1 of the kernel function. When choosing the kernel function appropriately the new large-update IPMs have a polynomial ?(lognlog) iteration bound, thus improving the currently best known bound for large-update methods by almost a factor . Our unified analysis provides also the ?(log) best known iteration bound of small-update IPMs. At each iteration, we need to solve only one linear system. An extension of the above results to semidefinite optimization (SDO) is also presented. Received: March 2000 / Accepted: December 2001?Published online April 12, 2002  相似文献   

11.
Approximating quadratic programming with bound and quadratic constraints   总被引:24,自引:3,他引:24  
Received May 20, 1997 / Revised version received March 9, 1998 Published online October 9, 1998  相似文献   

12.
This paper applies the SDP (semidefinite programming)relaxation originally developed for a 0-1 integer program to ageneral nonconvex QP (quadratic program) having a linear objective functionand quadratic inequality constraints, and presents some fundamental characterizations of the SDP relaxation including its equivalence to arelaxation using convex-quadratic valid inequalities for the feasible regionof the QP.  相似文献   

13.
The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal–dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.Research of the first and third authors supported by NSF grant DMS-9870317, ONR grant N00014-98-1-0036.Research of the second author supported by NSF grant DMS-9805495.  相似文献   

14.
Received April 15, 1997 / Revised version received July 22, 1998 Published online November 24, 1998  相似文献   

15.
Optimality conditions for nonconvex semidefinite programming   总被引:9,自引:0,他引:9  
This paper concerns nonlinear semidefinite programming problems for which no convexity assumptions can be made. We derive first- and second-order optimality conditions analogous to those for nonlinear programming. Using techniques similar to those used in nonlinear programming, we extend existing theory to cover situations where the constraint matrix is structurally sparse. The discussion covers the case when strict complementarity does not hold. The regularity conditions used are consistent with those of nonlinear programming in the sense that the conventional optimality conditions for nonlinear programming are obtained when the constraint matrix is diagonal. Received: May 15, 1998 / Accepted: April 12, 2000?Published online May 12, 2000  相似文献   

16.
Robust Optimization (RO) is a modeling methodology, combined with computational tools, to process optimization problems in which the data are uncertain and is only known to belong to some uncertainty set. The paper surveys the main results of RO as applied to uncertain linear, conic quadratic and semidefinite programming. For these cases, computationally tractable robust counterparts of uncertain problems are explicitly obtained, or good approximations of these counterparts are proposed, making RO a useful tool for real-world applications. We discuss some of these applications, specifically: antenna design, truss topology design and stability analysis/synthesis in uncertain dynamic systems. We also describe a case study of 90 LPs from the NETLIB collection. The study reveals that the feasibility properties of the usual solutions of real world LPs can be severely affected by small perturbations of the data and that the RO methodology can be successfully used to overcome this phenomenon. Received: May 24, 2000 / Accepted: September 12, 2001?Published online February 14, 2002  相似文献   

17.
In this paper,we consider a class of quadratic maximization problems.For a subclass of the problems,we show that the SDP relaxation approach yields an approximation solution with the ratio is dependent on the data of the problem with α being a uniform lower bound.In light of this new bound,we show that the actual worst-case performance ratio of the SDP relaxation approach (with the triangle inequalities added) is at least α δd if every weight is strictly positive,where δd > 0 is a constant depending on the problem dimension and data.  相似文献   

18.
An interior Newton method for quadratic programming   总被引:2,自引:0,他引:2  
We propose a new (interior) approach for the general quadratic programming problem. We establish that the new method has strong convergence properties: the generated sequence converges globally to a point satisfying the second-order necessary optimality conditions, and the rate of convergence is 2-step quadratic if the limit point is a strong local minimizer. Published alternative interior approaches do not share such strong convergence properties for the nonconvex case. We also report on the results of preliminary numerical experiments: the results indicate that the proposed method has considerable practical potential. Received October 11, 1993 / Revised version received February 20, 1996 Published online July 19, 1999  相似文献   

19.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

20.
In this paper we investigate two approaches to minimizing a quadratic form subject to the intersection of finitely many ellipsoids. The first approach is the d.c. (difference of convex functions) optimization algorithm (abbr. DCA) whose main tools are the proximal point algorithm and/or the projection subgradient method in convex minimization. The second is a branch-and-bound scheme using Lagrangian duality for bounding and ellipsoidal bisection in branching. The DCA was first introduced by Pham Dinh in 1986 for a general d.c. program and later developed by our various work is a local method but, from a good starting point, it provides often a global solution. This motivates us to combine the DCA and our branch and bound algorithm in order to obtain a good initial point for the DCA and to prove the globality of the DCA. In both approaches we attempt to use the ellipsoidal constrained quadratic programs as the main subproblems. The idea is based upon the fact that these programs can be efficiently solved by some available (polynomial and nonpolynomial time) algorithms, among them the DCA with restarting procedure recently proposed by Pham Dinh and Le Thi has been shown to be the most robust and fast for large-scale problems. Several numerical experiments with dimension up to 200 are given which show the effectiveness and the robustness of the DCA and the combined DCA-branch-and-bound algorithm. Received: April 22, 1999 / Accepted: November 30, 1999?Published online February 23, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号