首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于叶片高光谱特性分析的树种识别   总被引:8,自引:0,他引:8  
高光谱遥感技术的出现将为解决森林树种的精细识别难题提供有效的途径。利用高光谱遥感技术进行树种鉴别时,光谱特征的选择及提取是个非常重要的过程。与多光谱数据相比,高光谱数据具有波段多、数据量大、冗余度大等特点。该文利用光谱微分法对原始光谱数据进行处理,分析不同树种原始光谱、光谱一阶微分和光谱二阶微分曲线图,从中选择差异较大的波段用于鉴别不同树种。最后利用欧氏距离对所选择的波段进行检验识别不同树种的效果,检验的结果显示选择的波段能有效地区分不同树种。区分不同树种的有效波段大都位于近红外波段, 并且差异最大的波段也是近红外波段,其分别为1 657~1 666和1 868~1 877 nm。  相似文献   

2.
高光谱参数和逐步判别的苎麻品种识别   总被引:2,自引:0,他引:2  
为了探讨基于高光谱的苎麻品种识别和分类的方法,在大田栽培条件下,采集了4个不同基因型苎麻品种共927个叶片高光谱数据。根据苎麻叶片高光谱反射曲线,选择了2组特征参数: 基于高光谱波形峰谷反射率和位置参数(V1组)、基于偏度和峰度参数(V2组)。运用逐步判别的方法,通过设置不同F值筛选不同个数的变量,分别建立基于2组特征参数的多个Fisher线性判别函数,并从计算量、正确率和稳定性三方面对所建立的判别函数进行分析比较。结论: (1)所有组合的判别函数总体平均正确率为91.1%,标准差总体均值为1.2%;(2)综合权衡,在所有组合中,V2组且14≥变量个数n≥8判别效果最好--计算量中等,正确率和稳定性均高于平均值,其中,13个变量的Fisher判定函数平均正确率最高有94.2%,标准差最低为0%;(3)若优先考虑正确率,V1组且22≥变量个数≥15正确率最高,平均正确率最大有95.5%,但计算量比较大,稳定性中等,标准差最低为0.9%。研究表明,利用高光谱参数结合逐步判别方法识别苎麻品种是可行的。  相似文献   

3.
宁夏盐池县荒漠草地属于中温带干旱气候,由于过度利用出现不同程度的退化,退化指示种比重增大,造成不同荒漠草地群落组成差异也很大,如何区别不同荒漠草地植物,并据此对退化指示种进行动态监测是了解荒漠草地退化程度的关键。目前随机森林(RF)、支持向量机(SVM)与K-邻近(KNN)分类模型被广泛应用于森林植物和农作物的遥感分类,并取得了较好的分类识别效果,但针对草地尤其是荒漠草地植物的分类识别研究较少。因此使用ASD地物光谱仪于7月在宁夏盐池二步坑、冯记沟、高沙窝、麻黄山不同荒漠草地采集了32种植物作样本获得442条光谱进行光谱特征分析。筛选出7个植被指数:归一化植被指数705(NDVI705)、绿通道植被指数(GNDVI)、光化学植被指数(PRI)、土壤调节植被指数(OSAVI)、可视化气压阻抗指数(VARI)、植被衰减指数(PSRI)和归一化水指数(NDWI)作为随机森林模型(RF)、支持向量机(SVM)模型、K-邻近(KNN)模型的原始变量,对32种荒漠草地植物进行分类识别,并通过分类模型精度的比较筛选较优模型。结果表明:(1)不同植物光谱反射率均符合绿色植物特征,但各植物原始光谱不同波段之间存在明显差异,植物原始光谱水分吸收波段差异明显,且有红边蓝移现象;(2)RF,SVM和KNN三个分类模型对32种植物的分类精度分别达到了0.98,0.94和0.98,识别效果较好,但3种分类模型均对白莲蒿与北芸香、虫实与甘草发生了误判;(3)随机森林模型重要性指标中NDWI与PRI为区分荒漠草地植物的关键指标,说明荒漠植物冠层水分与类胡萝卜素含量是影响荒漠草地植物光谱分类的重要因素。试验利用随机森林模型(RF)、支持向量机(SVM)与K-邻近(KNN)分类方法,建立了主要植物的分类模型。  相似文献   

4.
基于均值置信区间带的高光谱特征波段选择与树种识别   总被引:2,自引:0,他引:2  
以柏木、雷竹和无患子野外高光谱数据为基础,在统计学理论和实践分析的基础上,提出了利用均值置信区间带筛选树种间最佳特征区分波段及利用Manhattan距离和Min-Max区间相似度识别树种的问题。研究结果表明:(1)柏木与雷竹之间的最佳区分波段为358~386,452~1 145和1 314~2 500 nm,柏木与无患子之间的最佳区分波段为350~446,497~527,553~1 330,1 355~2 400和2 436~2 500 nm,雷竹与无患子之间的最佳区分波段为434~555,580~1 903,1 914~2 089,2 172~2 457和2 475~2 500 nm;(2)在最佳区分波段内,同种树种间的Manhattan距离远小于异种树种间的Manhattan距离,同种树种间的Min~Max区间相似度远大于异种树种间的Min~Max区间相似度,Manhattan距离和Min~Max区间相似度可以有效区分和识别不同类型的树种。  相似文献   

5.
基于高光谱成像和判别分析的黄瓜病害识别   总被引:3,自引:0,他引:3  
利用光谱成像技术(400~720 nm)识别黄瓜白粉病、角斑病、霜霉病、褐斑病和无病区域。构建高光谱图像采集系统进行样本图像的采集,预处理和光谱信息的提取。由于获得的原始光谱数据量很大,为了减少后续运算量,提高准确率,采用逐步判别分析和典型判别分析两种方法进行降维。逐步判别从55个波段中选择12个波段,典型判别从55个波段中提取2个典型变量。利用选择的光谱特征参数建立病害识别模型。逐步判别构建的模型对训练样本和测试样本的判别准确率分别为100%和94%,典型判别构建的模型对训练样本和测试样本的判别准确率均为100%。说明利用高光谱成像技术可以进行黄瓜病害的快速、准确识别,并为实现可见光谱范围内黄瓜病害的田间实时在线检测提供了可能。  相似文献   

6.
基于高光谱图像和判别分析的草地早熟禾品种识别研究   总被引:1,自引:0,他引:1  
利用高光谱成像技术(550~1 000nm),采集了6个草地早熟禾品种新鲜叶片的高光谱图像,提取了叶片的光谱信息,运用Wilks’Lambda逐步判别分析法,从94个波段中选择了9个特征波段,根据特征波段的光谱信息,采用Fisher线性判别法,构建草地早熟禾品种的判别分析模型。结果表明,选择3个、6个和9个波段组合,对120个训练样本的识别正确率分别为98.3%,100%和100%,对60个测试样本的识别正确率分别为83.3%,96.7%和100%,说明以9个特征波段的光谱信息构建的草地早熟禾品种判别模型是合适的,利用高光谱成像技术结合判别分析法,为快速识别草地早熟禾品种提供了一种新的方法。  相似文献   

7.
为了提高木材树种分类的正确率,提出了一种基于I-BGLAM纹理特征和光谱特征融合的高光谱图像的木材树种分类方法。实验数据是利用SOC710VP高光谱成像仪获取的可见光/近红外(372.53~1 038.57 nm)范围内的高光谱图像。首先,利用基于OIF的特征波段选择方法降低高光谱图像的维数,选择出含有信息量大的波段。其次,对选择出的波段图像使用NSCT及NSCT逆变换得到融合图像,对得到的融合图像使用I-BGLAM提取其纹理特征。与此同时,对高光谱图像的全波段求取平均光谱并进行S-G(Savitzky-Golay)平滑得到光谱特征。最后,将得到的纹理特征和光谱特征融合后送进极限学习机(ELM)中进行分类。此外,还和基于灰度共生矩阵(GLCM)的木材识别的传统方法以及近几年木材树种识别领域内被提出的主流方法进行了比较。该研究主要创新点有两个:一是将强纹理提取器I-BGLAM用于高光谱图像中提取其纹理特征;二是提出一种新的特征融合的模型用于高光谱图像的分类。针对8个树种的实验结果表明,单独使用I-BGLAM提取的纹理特征来进行分类的正确率最高可到达88.54%,而使用GLCM提取纹理特征的传统方法正确率最高只有76.04%,该结果可以得出本文使用I-BGLAM在纹理特征提取方面要优于GLCM,这为后面建立的融合模型打下很好的基础,单独使用平均光谱特征来分类的正确率最高可以达到92.71%,使用所提出的特征融合方法所得到的分类正确率最高可达到100%,这说明使用所提出的融合模型来分类要比以前单独使用某一种特征的分类模型要好。此外,使用所提出的方法得到的分类正确率要高于本领域内其他两种主流的识别方法。因此,所提出的基于I-BGLAM纹理特征和光谱特征融合的方法能够提高木材树种分类的正确率,该方法在木材树种分类方面有着一定的利用价值。  相似文献   

8.
高光谱结合主成分分析的苎麻品种识别   总被引:1,自引:0,他引:1  
苎麻(Boehmeiria nivea L)是我国的特产,作为一种传统的纤维作物,一直有着较高的经济地位。开发一种基于高光谱的、新型高效的苎麻品种识别方法,有利于苎麻栽种、种质资源开发利用,为实现苎麻高产优质及麻田精准管理提供关键技术支撑,对提高苎麻产量和品质有重要意义。为了将高光谱技术应用于苎麻品种识别,采集了9个不同基因型苎麻品种,利用地物光谱仪测定苎麻叶片高光谱反射率,共1 458个叶片高光谱数据,利用主成分分析(PCA)对高光谱数据进行降维,探讨PCA最佳主因子个数的确定方法,比较不同主因子个数与不同判别分析(DA)方法--即线性判别分析(LDA)、二次判别分析(QDA)和马氏距离判别分析(MD-DA)组合,在建立基于叶片高光谱的苎麻品种识别模型中效果。对全波段的数据样本进行主成分分析之后,以2~20个主成分作为特征变量,分别建立LDA,QDA和MD-DA三种品种判别模型进行预测,以预测集正确率为评价标准,比较各种组合的效果。结果表明,若以累积贡献率≥85%为标准,选择2个主成分时,LDA,QDA和MD-DA三种判别模型预测集正确率分别为32.92%,38.48%和33.54%;以特征值≥1为标准,选择11个主成分时,三种判别模型预测集正确率分别为68.72%,87.04%和83.54%;若以预测集正确率为优先考虑标准,将主成分个数增加至20个时,三种判别模型正确率有较大提高,分别为84.98%,95.68%和95.27%。由此,得到如下结论:①利用PCA组合DA方法建立基于苎麻叶片高光谱的品种识别模型是可行的,但因子数不同、DA判别标准不同、组合方法不同效果差异非常大;②主因子个数对识别结果的影响较为明显,适当增加主成分个数可以显著提高模型判别正确率,因此不应局限于PCA特征值和方差累积贡献率的选择方法;③主因子个数相同时,三种判别标准中,QDA效果最好,LDA效果最差;④最佳组合是20个主成分+QDA方法,其数据维度大大降低(由全波段的2 031维降低20维),而预测集正确率为95.68%。  相似文献   

9.
一种基于光谱奇异值检测的高光谱遥感小目标探测方法   总被引:4,自引:1,他引:3  
高光谱遥感技术能够借助丰富的地物图像和光谱信息,反映目标地物与背景地物间的细微差异,从而将其区分开来。目前的小目标探测算法多侧重于从图像处理方面着手,文章则从光谱维数据分析的角度出发,利用光谱分析中的奇异值检测方法探测小目标,首先对关注区域的地物像元光谱进行连续统去除和正交变换等预处理;然后将每个像元的光谱对该区域平均光谱进行光谱匹配求其相似性,并实现高光谱数据降维;而后通过光谱角匹配值的马氏距离进行奇异值检测,将马氏距离大于自适应阈值的像元判定为小目标。该方法不需要任何先验信息,实验结果表明该方法运算量较小,运算速度快,并有较好的小目标探测准确度。  相似文献   

10.
黄敏  朱晓  朱启兵  冯朝丽 《光子学报》2014,41(7):868-873
玉米种子的形态特征是玉米品种识别的重要因素之一.采用高光谱成像系统获取9个品种共432粒玉米种子的高光谱反射图像,对图像进行校正和预处理,提取每个样本在563.6~911.4 nm共55个波段范围内的形状特征.分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类.结果显示,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段的正确识别率.研究表明,该方法能充分利用高光谱图像中可见光和近红外区域的有效特征信息,较准确地鉴别玉米品种,为玉米品种的自动识别领域提供了一种新方法.  相似文献   

11.
灵武长枣作为宁夏优势特色枣果,具有重要的经济社会价值和科学研究意义.利用可见近红外(Vis/NIR)高光谱成像系统采集60颗完整长枣光谱图像,然后利用损伤装置对60颗完整长枣进行损伤实验,最终得到60颗损伤(内部瘀伤)长枣,高光谱成像系统采集损伤后五个时间段(损伤后2,4,8,12和24 h)长枣的光谱图像.对采集的长...  相似文献   

12.
基于不同模型的土壤有机质含量高光谱反演比较分析   总被引:8,自引:0,他引:8  
以新疆奇台县为研究区域,选取该县40个土壤样本,采用多元线性逐步回归法和人工神经网络法两种方法分别建立了土壤有机质含量的反演模型,并对模型进行了检验。结果发现:不同模型的精度值各异,其拟合效果从高到低依次为人工神经网络(ANNs)集成模型>单个人工神经网络(ANNs)模型>多元逐步回归(MLSR)模型。人工神经网络的线性和非线性逼近能力较强,而其集成模型作为提高反演模型精度的重要手段,相关系数高达0.938,均方根误差和总均方根误差最小,分别仅为2.13和1.404,对土壤有机质含量的预测能力与实测光谱非常接近,分析结果达到了较实用的预测精度,为最优拟合模型。  相似文献   

13.
基于SVM与RF的苹果树冠LAI高光谱估测   总被引:7,自引:0,他引:7  
叶面积指数(leaf area index,LAI)是反映作物群体大小的较好的动态指标。运用高光谱技术快速、无损地估测苹果树冠叶面积指数,为监测苹果树长势和估产提供参考。以盛果期红富士苹果树为研究对象,采用ASD地物光谱仪和LAI-2200冠层分析仪,在山东省烟台栖霞研究区,连续2年测量了30个果园90棵苹果树冠层光谱反射率及LAI值;通过相关性分析方法构建并筛选出了最优的植被指数;利用支持向量机(support vector machine, SVM)与随机森林(random forests, RF)多元回归分析方法构建了LAI估测模型。新建的GNDVI527,NDVI676,RVI682,FD-NVI656和GRVI517五个植被指数及前人建立的两个植被指数NDVI670和NDVI705与LAI的相关性都达到了极显著水平;建立的RF回归模型中,校正集决定系数C-R2和验证集决定系数V-R2为0.920,0.889,分别比SVM回归模型提高了0.045和0.033,校正集均方根误差C-RMSE、验证集均方根误差V-RMSE为0.249,0.236,分别比SVM回归模型降低了0.054和0.058, 校正集相对分析误C-RPD、验证集相对分析误V-RPD达到了3.363和2.520,分别比SVM回归模型提高了0.598和0.262,校正集及验证集的实测值与预测值散点图趋势线的斜率C-SV-S都接近于1,RF回归模型的估测效果优于SVM。RF多元回归模型适合盛果期红富士苹果树LAI的估测。  相似文献   

14.
矿区土壤Cu含量高光谱反演建模   总被引:4,自引:0,他引:4  
为探究高光谱遥感手段反演土壤Cu含量方法的可行性,以湖南省某矿区为例,利用ASD地物光谱仪和实验室电感耦合等离子发射光谱法测定83个土壤样品350~2 500 nm光谱信号和Cu含量。在光谱重采样、一阶/二阶微分、标准正态变换预处理对比分析基础上,分别采用主成分分析与相关分析对潜在建模变量进行初步筛选,运用逐步回归方法确定最终模型变量,建立土壤Cu含量反演模型,基于最优模型识别Cu含量光谱指示特征波段。结果表明,相对于传统主成分分析方法,标准正态变换后的光谱全要素主成分分析逐步回归建模方法因保留土壤样品弱光谱信号能有效提升土壤Cu含量估算能力,R2达0.86,模型对于预测样本的估计效果较好,建模样本和预测样本的残差分别为0.76和1.29,且通过F检验;360~400,922~1 009,1 833~1 890与2 200~2 500 nm波段对研究区土壤Cu含量有较好指示性。研究结果将丰富南方矿区土壤Cu含量估算典型案例,同时为发展基于高光谱遥感的土壤环境监测手段提供理论支撑。  相似文献   

15.
提出了基于连续投影算法(successive projections algorithm,SPA)、载荷系数法(x-loading weights,x-LW)和格拉姆-施密特正交(gram-schmidt orthogonalization,GSO)提取特征波长的高光谱成像技术检测番茄叶片早疫病的方法。首先获取380~1 023 nm波段范围内70个健康和70个染病番茄叶片的高光谱图像信息,然后提取健康和染病叶片感兴趣区域(region of interest, ROI)的光谱反射率值,建立番茄叶片早疫病的最小二乘-支持向量机(least squares-support vector machine,LS-SVM)鉴别模型,建模集和预测集的鉴别率都是100%。再通过SPA 、x-LW和GSO提取特征波长(effective wavelengths,EW),并建立EW-LS-SVM和特征波长-线性判别分析(ew-linear discriminant analysis,EW-LDA)鉴别模型。结果显示,每个模型的鉴别效果都很好,EW-LS-SVM模型中预测集的鉴别率都达到了100%,EW-LDA模型中预测集的鉴别率分别是100%, 100%和97.83%。基于SPA, x-LW和GSO所建模型的输入变量分别是4个(492,550,633和680nm),3个(631,719和747 nm)和2个(533和657 nm),较少的特征波长便于实时检测仪器的开发。结果表明,高光谱成像技术检测番茄叶片早疫病是可行的,SPA,x-LW和GSO都是非常有效的特征波长提取方法。  相似文献   

16.
几种常见树种叶片光谱秋季变化特征分析   总被引:2,自引:0,他引:2  
叶片随着时间生长产生变化,其光谱特征也会发生变化。研究相同树种叶片不同时间条件下的光谱变化规律以及不同树种叶片相同时间条件下的光谱特征,不仅为植被叶片光谱随时间变化的规律研究提供理论基础,也是高光谱遥感精确识别植被信息的关键。选取北京市10种常见树种,利用地物光谱仪观测各树种不同时间叶片光谱,同时将观测的光谱进行一阶微分处理和典型波段分析,对比相同时间不同树种叶片光谱的差异,分析相同树种不同时间的光谱变化规律,探索不同时相条件下高光谱遥感识别树种的有效波段。结果表明:不同树种叶片光谱均随时间的改变而产生显著变化,但差异规律各不相同;不同树种相同时间叶片光谱在部分波段存在显著差异,为高精度树种识别提供了理论依据和叶片基础光谱数据。  相似文献   

17.
高光谱成像的柑橘病虫害叶片识别方法   总被引:1,自引:0,他引:1  
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号