首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large increases of mobility of local segmental relaxation observed in polymer films as the film thickness is decreased, as evidenced by decreases of the glass temperature, are not found for relaxation mechanisms that have longer length scales including the Rouse relaxation modes and the diffusion of entire polymer chains. We show that the coupling model predictions, when extended to consider polymer thin films, are consistent with a large increase of the mobility of the local segmental motions and the lack of such a change for the Rouse modes and the diffusion of entire polymer chains. There are two effects that can reduce the coupling parameter of the local segmental relaxation in thin films. One is the chain orientation that is induced parallel to the surface when the film thickness h becomes smaller than the end-to-end distance of the chains and the other is a finite-size effect when h is no longer large compared to the cooperative length scale. Extremely thin ( ≈ 1.5 nm) films obtained by intercalating a polymer into layered silicates have thickness significantly less than the cooperative length scale near the bulk polymer glass transition temperature. As a result, the coupling parameter of the local segmental relaxation in such thin films is reduced almost to zero. With this plausible assumption, we show the coupling model can explain quantitatively the large decrease of the local segmental relaxation time found experimentally. Received 1 August 2001 and Received in final form 1 December 2001  相似文献   

2.
The segmental dynamics of 1.5-2.0 nm polymer films confined between parallel solid surfaces is investigated with dielectric spectroscopy in polymer/silicate intercalated nanocomposites. The confinement effect is evident by the observation of a mode, much faster than the bulk-polymer alpha relaxation and exhibiting much weaker temperature dependence. This is discussed in relation to either the interlayer spacing restricting the cooperative volume of the alpha relaxation or to the dominance of the more mobile interphase regions as predicted by simulations; the data qualitatively support the former.  相似文献   

3.
The dispersion relation for optical phonon modes in graded wurtzite AlN/GaN and AlN/InN quantum wells is calculated taking into account the existence of interfacial transition regions. We make use of a model based on the macroscopic theory developed by Loudon, known as the continuum dielectric model. The optical phonon modes are modelled considering only the electrostatic boundary conditions (neglecting retardation effects), in the absence of charge transfer between ions. We show that the graded interfaces strongly shift the frequencies of the phonon modes of the otherwise abrupt nitrides quantum wells.  相似文献   

4.
Within the framework of the dielectric continuum model, interface optical(IO) and surface optical(SO) phonon modes and the Fr?hlich electron-IO (SO) phonon interaction Hamiltonian in a multi-shell spherical system were derived and studied. Numerical calculation on CdS/HgS/H2O and CdS/HgS/CdS/H2O spherical systems have been performed. Results reveal that there are two IO modes and one SO mode for the CdS/HgS/H2O system, one SO mode and four IO modes whose frequencies approach the IO phonon frequencies of the single CdS/HgS heterostructure with the increasing of the quantum number l for CdS/HgS/CdS/H2O. It also showed that smaller l and SO phonon compared with IO phonon, have more significant contribution to the electron-IO (SO) phonon interaction. Received 16 October 2001 and Received in final form 23 January 2002 Published online 25 June 2002  相似文献   

5.
It has been experimentally demonstrated that a low-loss guided hybrid mode is supported if a metal strip is embedded in a low index polymer layer surrounded by two high index slabs. In this paper, further numerical analyses on the guided hybrid modes are reported to fully elucidate the characteristics of the hybrid plasmonic waveguide. For a one-dimensional slab structure with a metal film of infinite width, simulation results exhibit that low-loss guided hybrid modes are associated with surface plasmon modes and dual dielectric slab modes. The optical properties of the guided modes are improved by increasing the field intensity which is confined into lossless dielectric layers by decreasing the metal film thickness and increasing the refractive index and thickness of the high-index slabs. The finite element method is used to investigate the lateral mode confinement of the optical guided modes by the corresponding metal strip. By reducing the metal film width, the guided modes are confined in the plane transverse to the direction of propagation and the characteristics are significantly improved. The hybrid plasmonic waveguide can be exploited for long-range propagation-based application such as optical interconnection.  相似文献   

6.
After a brief review on the recent developments of the dielectric studies in thin polymer films, our recent results on dynamics in thin films of poly(methyl methacrylate) (PMMA) and polyisoprene (PIP) are shown. For PMMA, the tacticity effect on dynamics in thin films has been investigated and the disappearance of this effect was found below a critical thickness. For PIP, the motion of entire polymer chains, namely, the normal mode, has been investigated. The dielectric-loss spectrum of the normal mode is much more sensitive to the decrease in film thickness than that due to the -process. The broadening of dielectric-loss spectra of the normal mode is observed for film thicknesses below about 150 nm, while the position of the loss peak does not change in the thickness range down to about 50 nm. Anomalous increase in dielectric loss between the -process and the normal mode was observed, which is consistent with the recent report on the existence of an additional relaxation process.Received: 1 January 2003, Published online: 14 October 2003PACS: 64.70.Pf Glass transitions - 68.60.-p Physical properties of thin films, nonelectronic  相似文献   

7.
We propose a simple phenomenological model describing composite crystals, constructed from two parallel sets of periodic inter-penetrating chains. In the harmonic approximation and neglecting thermal fluctuations we find the eigenmodes of the system. It is shown that at high frequencies there are two longitudinal sound modes with standard attenuation, while in the low frequency region there is one propagating sound mode and an over-damped phase mode. The crossover between these two regions is analyzed numerically and the dynamical structure factor is calculated. It is shown that the qualitative features of the experimentally observed spectra can be consistently described by our model. Received 28 November 2001 and Received in final form 23 January 2002  相似文献   

8.
The glassy dynamics of poly(propylene glycol) (PPG) and poly(dimethyl siloxane) (PDMS) confined to a nanoporous host system revealed by dielectric spectroscopy, temperature-modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature-modulated DSC agree quantitatively indicating that both experiments sense the glass transition. For PPG the segmental dynamics is determined by a counterbalance of adsorption and confinement effect. The former results form an interaction of the confined macromolecules with the internal surfaces. A confinement effect originates from an inherent length scale on which the underlying molecular motions take place. The increment of the specific-heat capacity at the glass transition vanishes at a finite length scale of 1.8 nm. Both results support the conception that a characteristic length scale is relevant for glassy dynamics. For PDMS only a confinement effect is observed which is much stronger than that for PPG. Down to a pore size of 7.5 nm, the temperature dependence of the relaxation times follows the Vogel-Fulcher-Tammann dependence. At a pore size of 5 nm this changes to an Arrhenius-like behaviour with a low activation energy. At the same pore size vanishes for PDMS. Quasielastic neutron scattering experiments reveal that also the diffusive character of the relevant molecular motions --found to be characteristic above the glass transition-- seems to disappear at this length scale. These results gives further strong support that the glass transition has to be characterised by an inherent length scale of the relevant molecular motions.Received: 1 January 2003, Published online: 14 October 2003PACS: 64.70.Pf Glass transitions - 77.22.Gm Dielectric loss and relaxation - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling  相似文献   

9.
A major limit to steady state and advanced high operation of tokamaks of reactor class is due to the onset of tearing modes that develop magnetic and may cause loss of energy confinement or a major disruption. Here the structure of a classical problem about the effects of external control helical fields is analysed and it is shown to offer a general paradigm of response of low order classical and neoclassical tearing modes to a wide class of external perturbations. New results of principle on the structural stability of the response model are obtained, leading to a clear interpretation of the role of “seed islands" in the onset of neo-classical tearing modes and the role of finite ion larmor radius corrections to Ohm's law. Received 12 November 2001 and Received in final form 4 January 2002  相似文献   

10.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

11.
We have studied thermal expansion of free standing polystyrene thin films using X-ray reflectivity to elucidate the glass transition temperature and the thermal expansivity. We found that the glass transition temperature Tg decreased with the film thickness, depending on molecular weight. The reduction in the free standing films is much larger than in the supported films on Si substrate, suggesting that some segmental motions are activated due to free surfaces on both sides in the free standing films. We also found that the thermal expansivity in the glass and the melt decreased with the film thickness. This decrease must be attributable to chain confinement effects.  相似文献   

12.
Light distributions near resonant metal nanoparticles are recorded by a scattering-type scanning near-field optical microscope (s-SNOM), for the first time with a sub-particle-size resolution (<10 nm) and with simultaneous amplitude and phase contrast. The images depict the optical oscillation patterns of single plasmon particles. Examples are presented of particles excited in dominantly dipolar and quadrupolar modes, and also of closely spaced particles sustaining a gap mode. The gap mode can provide enhanced optical fields in nanometric spots for non-linear and single-molecule spectroscopy applications. Received: 20 June 2001 / Revised version: 3 August 2001 / Published online: 19 September 2001  相似文献   

13.
Metal-coated dielectric tetrahedral tips (T-tip) have long been considered to be interesting structures for the confinement of light to nanoscopic dimensions, and in particular as probes for scanning near-field optical microscopy. Numerical investigations using the Finite-Difference Time-Domain (FDTD) method are used to explore the operation of a T-tip in extraction mode. A dipole source in close proximity to the apex excites the tip, revealing the field evolution in the tip, the resulting edge and face modes on the metal-coated surfaces, and the coupling from these modes into highly directional radiation into the dielectric interior of the tip. These results are the starting point for illumination-mode numerical investigations by a Volume Integral equation method, which compute the field distribution that develops in a T-tip when a Gaussian beam is incident into the tip, and which show that a highly confined electric field is produced at the apex of the tip. The process of light confinement can be considered as a superfocussing effect, because the intensity of the tightly confined light spot is significantly higher than that of the focussed yet much wider incident beam. The mechanism of superfocussing can be considered as a dimensional reduction of surface plasmon modes, where an edge plasmon is the most important link between the waveguide-modes inside the tip and the confined near field at the apex.  相似文献   

14.
A theory is presented for the propagation of phonon-polariton modes arising when phonons are coupled to electromagnetic waves in multilayered structures. A multi-layered structure consists of a thin film surrounded symmetrically by a bounding media. Numerical calculations are given for s-polarized phonon-polariton modes in the case where the bounding media are assumed to be semi-infinite layers with nonlinear dielectric functions of ionic crystal type supporting optical phonon modes and the thin film is characterized by a Kerr-type nonlinear dielectric function. The phonon-polaritons were found to have distinct branches characteristic of optical phonons and showing features that are different from those of plasmon-polaritons [S. Baher, M.G. Cottam, Surf. Rev. Lett. 10 (2003) 13]. The parameters that modify the modes are the in-plane wave vector, the thickness of the film, the phonon frequency and the nonlinearity of each layer. It was found that by increasing the film thickness and nonlinearity coefficient, the curves move to the left and the number of the branches increases without changing the pattern of the curves.  相似文献   

15.
聚合物导电性能差, 表面电荷积聚所产生的电容效应致使其表面电位衰减, 采用等离子体浸没离子注入对其表面改性是非常困难的. 建立了绝缘材料等离子体浸没离子注入过程的粒子模拟(PIC)模型, 实时跟踪离子在等离子体鞘层中的运动形态及特性并进行统计分析. 并基于PIC模型, 将聚合物表面的二次电子发射系数直接与离子注入即时能量建立关联, 研究了聚合物厚度、介电常数和二次电子发射系数等物理量对鞘层演化、离子注入能量和剂量的影响规律. 研究结果表明: 当聚合物厚度小于200 μ m, 相对介电常数大于7, 二次电子发射系数小于0.5时, 离子注入剂量和高能离子所占的份额与导体离子注入情况相当. 通过对聚合物表面离子注入剂量和高能离子所占份额的研究, 为绝缘材料和半导体材料表面等离子体浸没离子注入的实现提供了理论和实验依据.  相似文献   

16.
The collective plasma modes in a quasi-two-dimensional (Q2D) electron system located over the free surface of liquid helium are studied theoretically within many-body dielectric formalism. The dispersion of modes is considered both over bulk liquid and over helium film where the essential modification of interelectron interaction occurs due to screening effects in the substrate with a large value of dielectric constant. It is shown that the plasma spectrum consists of longitudinal and transverse branches which dispersion laws depend on the values of the dielectric constant of helium and the film thickness. For the helium film covering metal, the longitudinal mode is acoustic differing of that for the surface electron (SE) system over bulk helium.  相似文献   

17.
In this paper, we have investigated the ground states of a few-layered fcc thin film of binary alloy with two surfaces in the (001) direction under symmetric surface confinement. The phase diagram of the ground states is given according to the energy analysis of binary alloy thin film composed of six atomic layers in the (001) direction. Surface confinement field (SC field) is introduced as a term to describe the confinement on the two surfaces in the (001) direction. Using Monte Carlo simulation, we have found that there are 17 different ground states occurring when both SC field and chemical potential vary from - ∞ to + ∞. Antiphase boundary(APB) was found in 12 of the 17 ground states, and only nine configurations with different symmetry were found among the 17 ground states. Received 6 November 2001 and Received in final form 25 January 2002  相似文献   

18.
We present a simple and cheap approach to fabricate large-area stop-band filters and mirrors for the THz range. This approach extends the well-known concept of dielectric mirrors to the far infrared. We use alternating layers of different polymer materials with a typical thickness of several tens of micrometers to build a flexible all-plastic mirror. The structures are characterized by THz time-domain spectroscopy. The experimental results are in good agreement with transfer-matrix simulations. Received: 28 September 2001 / Accepted: 4 October 2001 / Published online: 20 December 2001  相似文献   

19.
We demonstrate that precipitation of implanted erbium ions at silicon-polymer interface initiates oxidation reaction of Si(1 0 0) surface at room temperature. Oxidation reaction starts through spontaneous formation of circular patches of SiOx and the diameter of these circles grows uniformly with time and touch each other to cover the entire surface by keeping the thickness of these patches almost fixed at 4 nm. The nucleation and in-plane growth rates of SiOx circles are found to be dependent on the fluence of erbium-implantation, the condition of substrate and can be controlled by controlling oxygen partial pressure of the environment. In addition to the precipitation of erbium ions at silicon-polymer interface, enhancement of concentration of erbium ions was observed at periodic depths within polymer film confirming that in ultra-thin films polymer molecules form layers parallel to substrate surface due to confinement.  相似文献   

20.
An efficient emission of picosecond bunches of energetic protons and carbon ions from a thin layer spalled from a organic solid by a laser prepulse is demonstrated numerically. We combine the molecular dynamics technique and multi-component collisional particle-in-cell method with plasma ionization to simulate the laser spallation and ejection of a thin (∼20–30 nm) solid layer from an organic target and its further interaction with an intense femtosecond laser pulse. In spite of its small thickness, a layer produced by laser spallation efficiently absorbs ultrashort laser pulses with the generation of hot electrons that convert their energy to ion energy. The efficiency of the conversion of the laser energy to ions can be as high as 20%, and 10% to MeV ions. A transient electrostatic field created between the layer and surface of the target is up to 10 GV/cm. Received: 13 March 2001 / Accepted: 20 March 2001 / Published online: 20 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号