首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photocatalytic one-electron oxidation reactions of aromatic sulfides using the carboxymethyl-beta-cyclodextrin (CM-beta-CD)-modified TiO(2) nanoparticles (TiO(2)/CM-beta-CD) were investigated by using nano- and femtosecond transient absorption spectroscopies. The one-electron oxidation processes of the substrate (S) by the valence band hole (h(VB) (+)) at the TiO(2) surface and the trapped hole at the adsorption site of the CM-beta-CD (h(CD) (+)) were examined. The transient absorption spectra and time traces observed for the charge carriers and the radical cation of S (S(.+)) revealed that the one-electron oxidation reaction of S during the nano- and femtosecond laser flash photolyses of TiO(2)/CM-beta-CD is significantly enhanced relative to bare TiO(2). The kinetics of the decay and the dimerization processes between S(.+)s are discussed on the basis of the results obtained by the pulse radiolysis technique.  相似文献   

2.
The TiO2 photocatalytic one-electron oxidation mechanism of aromatic sulfides with a methylene bridging group (-(CH2)n-, n=0-4) between the 4-(methylthio)phenyl chromophore and the carboxylate binding group on the surface of a TiO2 powder slurried in acetonitrile (MeCN) has been investigated by time-resolved diffuse reflectance (TDR) spectroscopy. The electronic coupling element (H(DA)) between the hole donor and acceptor, which was estimated from the spectroscopic characteristics of the charge transfer (CT) complexes of the substrates (S) and the TiO2 surface, exhibited an exponential decline with the increasing of the methylene number of S. The determined decay factor (beta) of 9 nm(-1) also supports the fact that the 4-(methylthio)phenyl chromophore is separated from the TiO2 surface. The efficiency of the one-electron oxidation of S adsorbed on the TiO2 surface, which was determined from the relationship between the amount of adsorbates and the concentration of the generated radical cations, significantly depended on the H(DA) value, but not on the oxidation potential of S determined in homogeneous solution.  相似文献   

3.
4.
One-electron oxidation of alcohols such as methanol, ethanol, and 2-propanol by 1,3,5-trimethoxybenzene radical cation (TMB*+) in the excited state (TMB*+*) was observed during the two-color two-laser flash photolysis. TMB*+ was formed by the photoinduced bimolecular electron-transfer reaction from TMB to 2,3,5,6-tetrachlorobenzoquinone (TCQ) in the triplet excited-state during the first 355-nm laser flash photolysis. Then, TMB*+* was generated from the selective excitation of TMB*+ during the second 532 nm laser flash photolysis. Hole transfer rate constants from TMB*+* to methanol, ethanol, and 2-propanol were calculated to be (5.2 +/- 0.5) x 10(10), (1.4 +/- 0.3) x 10(11), and (3.2 +/- 0.6) x 10(11) M-1 s-1, respectively. The order of the hole transfer rate constants is consistent with oxidation potentials of alcohol. Formation of TCQH radical (TCQH*) with a characteristic absorption peak at 435 nm was observed in the microsecond time scale, suggesting that deprotonation of the alcohol radical cation occurs after the hole transfer and that TCQ radical anion (TCQ*-), generated together with TMB*+ by the photoinduced electron-transfer reaction, reacts with H+ to give TCQH*.  相似文献   

5.
A C-O-bond cleavage of esters having a naphthyl group, NpCO-OR and RCO-ONp (Np=alpha- and beta-naphthyl ((alpha)Np and (beta)Np, respectively), R=Ph and Me), was found during the two-color two-laser flash photolysis in acetonitrile. The C-O-bond cleavage occurred when NpCO-OR and RCO-ONp were excited to the singlet excited states (S1). On the other hand, no reaction occurred from the lowest triplet excited states (T1). When NpCO-OR(T1) and RCO-ONp(T1) were excited to the higher triplet excited states (Tn) using the second laser during the two-color two-laser flash photolysis, the C-O-bond cleavage occurred. The C-O-bond cleavage quantum yield (Phi) was estimated from the plots of the T1-state esters disappeared within a laser flash versus the second laser intensities. The C-O-bond cleavage in (beta)NpCO-OPh(Tn) occurred more efficiently than in (alpha)NpCO-OPh(Tn) and that in PhCO-O(beta)Np(Tn) occurred more efficiently than in PhCO-O(alpha)Np(Tn). The Phi value for ester with Ph and beta-Np groups was larger than that for ester with Ph and alpha-Np groups. The Phi value for MeCO-O(alpha)Np(Tn) was similar to those for PhCO-ONp(Tn), while that for MeCO-O(beta)Np(Tn) was much smaller than those for PhCO-ONp(Tn) and MeCO-O(alpha)Np(Tn). On the other hand, no C-O-bond cleavage was observed in NpCO-OMe(Tn). The Phi value depended on the characters of the groups (Np, Ph, and Me) on the ester. Whether R is Ph or Me with or without pi electron, respectively, is important for the C-O-bond cleavage. In other words, electronic delocalization of the T(n) state including Np and ester groups is necessary for the occurrence of the C-O-bond cleavage in NpCO-OR(Tn) and RCO-ONp(Tn).  相似文献   

6.
The lifetimes of benzophenone in the higher triplet excited state (BP(T(n))) and several BP derivatives in the T(n) states were measured directly to be tau(T(n))=37+/-7 ps and 20-33 ps, respectively, by using the nanosecond-picosecond (ns-ps) two-color/two-laser flash photolysis method. Based on the direct measurements of tau(T(n)) of BP(T(n)), the triplet energy transfer (TET) from BP(T(n)) to quenchers (Q), such as carbon tetrachloride (CCl4), benzene (Bz), and p-dichlorbenzene (DCB), was investigated. The fast TET from BP(T(n)) to Q can be attributed to the lifetime-dependent quenching process, according to the Ware theoretical model of the bimolecular energy transfer reaction. The contribution of the lifetime-dependent term on k(TET) was 27, 60, and 86% for CCl4, Bz, and DCB as the Q of BP(T(n)), respectively, indicating that the TET from BP(T(n)) to Q is influenced not only by tau(T(n)), but also by the size of Q.  相似文献   

7.
We have studied the interfacial electron-transfer dynamics on TiO(2) film sensitized with synthesized ruthenium(II)-polypyridyl complexes--[Ru(II)(bpy)(2)(L(1))] (1) and [Ru(II)(bpy)(L(1))(L(2))] (2), in which bpy=2,2'-bipyridyl, L(1)=4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol, and L(2)=4-(N,N-dimethylaminophenyl)-2,2'-bipyridine-by using femtosecond transient absorption spectroscopy. The presence of electron-donor L(2) and electron-acceptor L(1) ligands in complex 2 introduces lower energetic ligand-to-ligand charge-transfer (LLCT) excited states in addition to metal-to-ligand (ML) CT manifolds of complex 2. On photoexcitation, a pulse-width-limited (<100 fs) electron injection from populating LLCT and MLCT states are observed on account of strong catecholate binding on the TiO(2) surface. The hole is transferred directly or stepwise to the electron-donor ligand (L(2)) as a consequence of electron injection from LLCT and MLCT states, respectively. This results an increased spatial charge separation between the hole residing at the electron-donor (L(2)) ligand and the electron injected in TiO(2) nanoparticles (NPs). Thus, we observed a significant slow back-electron-transfer (BET) process in the 2/TiO(2) system relative to the 1/TiO(2) system. Our results suggest that Ru(II) -polypyridyl complexes comprising LLCT states can be a better photosensitizer for improved electron injection yield and slow BET processes in comparison with Ru(II)-polypyridyl complexes comprising MLCT states only.  相似文献   

8.
9.
Steady state fluorescence emission and transient absorption spectra of 9-fluorenone (9FL) were measured in the presence of 5-hydroxyindole (5HI) in highly polar acetonitrile (ACN) environment at ambient temperature. Cyclic voltammetry measurements demonstrate that ground state 5HI as a donor could take part in highly exothermic electron transfer (ET) reactions with excited 9FL, which should serve as electron acceptor. From the transient absorption measurements it is inferred that in geminate ion-pair (GIP) (or contact ion pair), formed initially due to photoinduced ET, the decay of this contact ion-pair occurs not only through ion recombination (back electron transfer to ground state of reactants), but through the other processes also such as proton-transfer (hydrogen abstraction) from radical cation to anion and separation of ion-pair producing the free ions. From the computed reorganisation energy parameter (λ) and experimentally observed - ET 0 values it is hinted that there is a possibility that highly exothermic forward electron transfer reactions in the singlet stateS 1 occur, within present reacting systems, in Marcus inverted region. Back transfer seems to follow the same path. Investigations with similar other reacting systems are underway.  相似文献   

10.
11.
12.
A photoactivated neutral organic super electron donor cleaves challenging arenesulfonamides derived from dialkylamines at room temperature. It also cleaves a) ArC? NR and b) ArN? C bonds. This study also highlights the assistance given to these cleavage reactions by the groups attached to N in (a) and to C in (b), by lowering LUMO energies and by stabilizing the products of fragmentation.  相似文献   

13.
In the literature it was found that titanium oxide clusters of a few metal atoms encapsulated inside the micropores of zeolite Y exhibit large blue shifts in the Ti-O ligand-to-metal charge-transfer band as compared to non-encapsulated bulk titanium dioxide particles. This blue shift of the Ti-O absorption band is believed to have a negative effect on the photocatalytic activity of zeolite-encapsulated TiO2. We report here on circumventing this problem and increasing visible-light absorption by means of a red shift of the absorption band caused by addition of some organic molecular modifiers containing acidic OH groups that can strongly bind with titanol groups TiOH. In the studied series of zeolite-encapsulated TiO2 samples, the red shift of the optical spectrum follows the order: catechol > 4-aminobenzoic acid > benzoic acid. Also N-doping of zeolite-encapsulated TiO2 clusters by thermal treatment with urea leads to a red shift of the TiO2 absorption band that depends on the annealing and hydration conditions. By comparison to the degradation of phenol in aqueous solution, we have demonstrated that these changes in the absorption spectrum on addition of the organic modifier are also reflected in the photocatalytic activity of the samples; a greater increase in photocatalytic activity (about 30%) was observed for the additive catechol.  相似文献   

14.
H4SiW12O40/TiO2/SiO2复合光催化剂的制备及性能研究   总被引:3,自引:2,他引:3  
溶胶-凝胶法制备了TiO2/S iO2光催化剂,利用所得TiO2/S iO2光催化剂为基体,浸渍烧结法制备了H4S iW12O40/TiO2/S iO2表面负载修饰型复合光催化剂。TG-DSC、XRD、SEM、BET对催化剂的物化结构进行了表征,分析了TiO2和H4S iW12O40催化活性组分在S iO2载体表面上的键联机理。光催化性能测试是以低浓度酸性品红染料的水溶液为降解目标物,试验结果表明H4S iW12O40的负载修饰可以改进TiO2/S iO2光催化剂的催化活性,酸性品红的降解效率最高可以增加45%。  相似文献   

15.
16.
Phenylurea herbicides undergo low-yield (phi(PI) <15 %) monophotonic photoionisation upon 193-nm laser flash excitation. The so-formed radical cations (phenylurea.+) are highly acidic (-1.5 < pKa <0.5) and deprotonate readily to yield the corresponding neutral radical (phenylurea.). Pulse radiolysis experiments allowed limitation of the reduction potential of phenylurea.+ within 2.22 V versus the normal hydrogen electrode (NHE) < E degrees (phenylurea.+/phenylurea) < 2.43 V versus NHE. The main photoproducts of UVC (lambda=193 nm) photodegradation of phenylureas correspond to a photo-Fries rearrangement. One-electron reduction with e-(aq) yields the corresponding radical anions (phenylurea.-), for which 4.3< pKa < 5.33. The rate constants for reaction with e-(aq) show that in photocatalysis the generation of phenylurea.- and O2.- on the surface of the photocatalyst may be competitive. High reactivity toward e-(aq) is predicted from linear free-energy relationships (LFER) for phenylureas bearing electron-withdrawing groups. Reaction with HO. takes place mainly via addition to the aromatic ring and/or H. abstraction from a saturated carbon atom (98 %), rather than one-electron oxidation (2 %). High reactivity toward oxidation by HO. is predicted from LFER for phenylureas bearing electron-donating groups. Adsorption studies for TiO2 in its polymorphic forms of rutile and anatase, as well as with the commercial mixture Degussa P-25, show photocatalysis is independent of the specific area of the catalyst. A variety of compounds are generated during the photocatalytic degradation of Diuron, while only two hydroxychloro derivatives are observed upon prolonged direct 365 nm irradiation. The photocatalytic degradation proceeds mainly by oxidation of the Me group of the side chain, hydroxylation of the aromatic ring, and dechlorination. The photoproducts of photocatalytic degradation differ from one polymorphic form of TiO2 to another.  相似文献   

17.
Photoinduced color change of naphthalene diimides (NDIs) bearing alkylamine moieties has been observed in the solid state. The color change is attributed to the generation of a NDI radical‐anion species, which may be formed through a photoinduced electron‐transfer process from the alkylamine moiety to the NDI. The photosensitivity of NDIs is highly dependent on the structures of the alkylamine moieties. Crystallographic analysis, kinetic analysis, UV/Vis/NIR spectroscopic measurements, and analysis of the photoproduct suggested that a radical anion was formed through an irreversible process initiated by proton abstraction between an amine radical cation and the neutral amine moiety. The radical anions formed stacks including mixed‐valence stacks and radical‐anion stacks, as shown by the broad absorption bands in near‐IR spectra. These photosensitive NDIs also showed crystal bending upon photoirradiation, which may be associated with a change in the intermolecular distance of the NDI stacks by the formation of monomeric radical anions, mixed‐valence stacks, and radical‐anion stacks.  相似文献   

18.
Surface-enhanced Raman scattering (SERS) spectroscopy and density functional theory (DFT) calculations were used to investigate the nature of the charge-transfer (CT) process between nitrothiophenol (NTP) isomers and the n-type semiconductor, TiO2. The Raman signals of p-NTP and m-NTP that were chemisorbed onto TiO2 were significantly enhanced with respect to their corresponding neat compounds. In particular, an enhancement factor (EF) of 102–103 was observed for both p-NTP and m-NTP, with m-NTP displaying a larger EF compared to p-NTP. The Raman signal of o-NTP on TiO2 was not detectable, owing to interference from fluorescence emissions. A molecule-to-TiO2 charge-transfer mechanism was responsible for the enhanced Raman signals observed in p-NTP and m-NTP. This transfer was due to a strong coupling between the adsorbate and the metal oxide, which led to an optically driven CT transition from the HOMO of NTP into the conduction band of TiO2. Based on the mesomeric effect, the NO2 group para to the thiol had a stronger electron-withdrawing ability than the NO2 group at the meta position. A less-efficient CT transition from p-NTP to TiO2 in the surface complex resulted in a weaker Raman-signal enhancement for p-NTP compared to m-NTP. The DFT calculation determined that the HOMO and the LUMO of NTP bound to TiO2 were located entirely on the adsorbate and the semiconductor, respectively, thereby supporting the experimental findings that a molecule-to-TiO2 mechanism was the driving force behind the observed SERS effect.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号