首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
紫草萘醌类物质与巯基亲核试剂的反应研究   总被引:4,自引:0,他引:4  
从中药紫草中提取了其主要有效成分β,β-二甲基丙烯酰阿卡宁,研究了其与含巯基亲核试剂的反应,探讨了这类反应的作用机制。  相似文献   

2.
天然紫草萘醌类化合物与苯胺和苯硫酚的亲核反应   总被引:9,自引:0,他引:9  
研究了天然紫草萘醌类化合物β-二甲基丙烯酰阿卡宁在没有还原剂和有还原剂存在下与亲核试剂的反应,合成了七个新的萘茜类衍生物。比较了β-二甲基丙烯酰阿卡宁与合成衍生物的生物活性。  相似文献   

3.
奈韦拉平(Nevirapine, NVP)是一种在临床上用于治疗和预防艾滋病的药物,但NVP会导致肝脏中一些酶的活力异常。乙醇脱氢酶(ADH)是肝脏中一种重要的代谢酶,目前NVP对ADH催化活性的影响尚不清楚。因此,本研究通过光谱学和分子对接技术探究NVP对ADH催化活性的影响及机制。实验结果表明,NVP通过诱导ADH的二级结构发生改变的模式激活ADH的催化活性,并且呈现剂量依赖性。NVP在范德华力和氢键的驱动下进入ADH的辅酶空腔从而形成稳定的二元复合物。热力学实验结果表明两者之间的结合常数为1.478×104 L·mol-1(298 K)。此外,NVP与ADH的Leu326、Ile328、Arg48等氨基酸残基之间的Pi-Cation、Pi-Alkyl以及Alkyl作用力在维持复合物稳定性方面同样发挥重要作用。  相似文献   

4.
利用循环伏安法(CV)和现场红外光谱电化学技术研究了2-氨基-3-氯-1,4-萘醌(ACNQ)在1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)中电化学捕获CO2的机理.研究结果表明,当体系中不存在CO2时,ACNQ在BMIMBF4中经历可逆的两步一电子过程;当体系中引入CO2时,电化学还原过程中形成的二价阴离子(ACNQ2-)作为亲核试剂,可攻击CO2的亲电子碳中心,形成稳定的CO2加合物.对电化学捕获CO2的化学计量进行了评估,结果表明,1摩尔的ACNQ2-可捕获1摩尔的CO2.结合B3LYP方法在6-311++G**水平上计算分析了反应中CO2加合物可能的结构.  相似文献   

5.
以水杨酸为羟基自由基(HO·)捕捉剂、四氯化碳为氢自由基(H·)捕捉剂,采用间歇高压反应釜对玉米秸秆纤维素在亚/超临界乙醇中的液化行为进行了研究,通过考察自由基捕捉剂用量、反应温度和反应时间对纤维素液化行为的影响,研究亚/超临界乙醇产生的HO·和H·自由基对纤维素的液化作用。结果表明,随着水杨酸用量增加(0-4mL),HO·浓度升高,生物油收率由29.3%提高至47.9%,固体残渣收率从26.7%降低至24.3%;反应温度从250℃升高至320℃,HO·活性随之增强,生物油收率由35.9%升高至58.2%,固体残渣收率由51.8%降低至20.4%;随着四氯化碳用量由0增加为2mL时,H·浓度降低,生物油收率由24.7%降低至20.7%,固体残渣收率由54.1%增加至59.1%;反应时间从0到30min,液化作用不断增强,生物油收率从8.7%升高至28.5%,固体残渣收率由86.3%下降至60.9%;30min之后,四氯化碳对H·活性的抑制加强,导致液化作用减弱,生物油收率有所下降。实验结果表明,乙醇在亚/超临界状态下能够产生HO·和H·,且HO·和H·浓度和活性与反应条件相关,对纤维素液化产物的收率及其分布具有明显的影响。  相似文献   

6.
通过调节微波反应溶液的pH值合成了一系列Mo修饰的Pt/C催化剂并用于乙醇的电氧化催化反应.利用X射线衍射(XRD)、透射电子显微镜(TEM)及X射线光电子能谱(XPS)对催化剂的晶型结构、微观形貌、粒径尺寸和表面电子结构进行了表征,并采用循环伏安法(CV)、计时电流法(CA)和电化学阻抗谱(EIS)对催化剂的乙醇电氧化催化性能进行了测试.结果表明,碱性环境有利于催化剂组分在碳载体上的均匀分布,pH值为14时制得的催化剂组分颗粒尺寸最小,且分布最均匀.该催化剂不仅表现出了最大的有效电化学比表面积和最高的乙醇电氧化催化活性,而且具有最稳定的乙醇氧化催化性能.  相似文献   

7.
铈和钆对体外培养正常二倍体细胞的作用   总被引:15,自引:1,他引:15  
采用同位素示踪、细胞周期分析和组化等技术,研究Ce3+和Gd3+对动物正常二倍体细胞的生物学作用。结果表明,Ce3+和Gd3+仅在一个狭窄的剂量范围(1×10-6~1×10-5mol/L)可促进正常二倍体细胞增殖,有明显的剂量—效应关系。Ce3+和Gd3+在高浓度时(1×10-3mol/L),对细胞具有毒性,可使细胞坏死、增殖缓慢并诱导细胞凋亡。  相似文献   

8.
9.
Monomeric alkannin and shikonin (A/S) are potent pharmaceutical substances with a wide spectrum of biological activity and comprise the active ingredients for several pharmaceutical preparations. Therefore, the determination of the impurities, degradation products or byproducts in alkannin and shikonin samples is of great importance. Oligomeric alkannin and shikonin are formed during biosynthesis of these bioactive secondary metabolites in Boraginaceaous root plants, during tissue culture production of A/S, during alkaline hydrolysis of A/S esters and also thermal treatment of A/S. In the present study, a dimeric alkannin/shikonin compound was isolated by size exclusion chromatography from alkannin and shikonin commercial samples and its structure was determined by one- and two-dimensional NMR spectroscopy. The structure of the most abundant oligomeric species in these samples, a dimeric naphthoquinone, was established for the fi rst time, indicating that coupling of the side chain of one naphthoquinone unit with the aromatic ring of a second naphthoquinone leads to dimer formation. This type of coupling allows further oligomerization by leaving one isohexenyl side chain available at the second monomer unit.  相似文献   

10.
Alkannin and shikonin (A/S) and their derivatives have been found in the roots of several Boraginaceous species and are also produced through plant tissue cultures. The chiral compounds A/S are potent pharmaceutical substances with a wide spectrum of biological and pharmacological activities like wound healing, antimicrobial, anti-inflammatory, anticancer and antioxidant activity. High-speed counter-current chromatography (HSCCC) was applied for the first time to the separation, preparative isolation and purification of A/S and their esters from extracts of Alkanna tinctoria roots, as well as commercial samples. The constituents of HSCCC fractions and their purity were determined by high-performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS), since DAD cannot detect oligomeric A/S derivatives that are present in most of the samples containing the respective monomeric derivatives. The purity of HSCCC fractions was compared with the one of fractions isolated by column chromatography (CC) using as stationary phases silica gel and Sephadex LH-20. As shown, the purity of monomeric alkannin/shikonin was greater by HSCCC than CC separation of commercial A/S samples.  相似文献   

11.
Intelligent breathable polyurethane (PU) that is easily allowable for vapor transmission at critical temperature would have significant implication for numerous applications; however, fabrication of such materials has proven to be tremendously challenging. Herein, we reported novel breathable polyurethane material covalently modified with carbon nanotubes (CNTs). When an optimal amount of CNTs (0.5 wt%) was added, the resultant PU film presented high waterproofness with hydrostatic pressure up to 10.9 kPa, as well as enhanced mechanical properties with a tensile strength of 22.2 kPa and elongation at break of 990%. This smart PU film has a significant increase in water vapor transmission rate between 18°C (1400 g/(m2·d)) and 38°C (3440 g/(m2·d)). The type of intelligent polyurethane material is a promising candidate for applications in areas such as protective clothing, separator media, and wearable electronics.  相似文献   

12.
Alkannin, shikonin (A/S) and their derivatives are enantiomeric hydroxynaphthoquinone red pigments found in the roots of almost 150 species of the Boraginaceae family. A/S have been shown to exhibit strong wound healing, antimicrobial, anti-inflammatory and antioxidant activities and recent extensive research has well established their antitumor properties. A/S and their derivatives comprise the active ingredients of several pharmaceutical and cosmetic preparations. Although A/S have been efficiently synthesized and have been produced by cell tissue cultures in high yield, most of the pharmaceutical preparations worldwide contain A/S extracted from the roots of Boraginaceous species, found in nature. In the present study, a high-performance liquid chromatography/photodiode array/mass spectrometry (HPLC/PDA/MS) method was established to identify monomeric hydroxynaphthoquinones of the alkannin series and other metabolites from Boraginaceous root extracts. This method can be applied for the identification of alkannin derivatives and other metabolites from Boraginaceous cell cultures, and also to determine active ingredients in pharmaceutical preparations containing A/S derivatives. A phytochemical investigation of the Alkanna genus grown in Greece was also performed. Fifty-three root samples belonging to 10 species of the genus Alkanna (A. calliensis, A. corcyrensis, A. graeca, A. methanaea, A. orientalis, A. pindicola, A. primuliflora, A. sieberi, A. stribrnyi and A. tinctoria) were collected from several regions of the Greek flora and analyzed for their constituent hydroxynaphthoquinones and other metabolites. In most of the above Alkanna samples tested, the main hydroxynaphthoquinones were determined to be beta,beta-dimethylacrylalkannin, isovalerylalkannin + alpha-methyl-n-butylalkannin and acetylalkannin. The hydroxynaphthoquinone constituents and their proportions were found to vary among Alkanna species. Unknown metabolites (not monomeric hydroxynaphthoquinones) were detected by HPLC-PDA-MS, while in several Alkanna species hydroxynaphthoquinones were detected for the first time.  相似文献   

13.
14.
Covalent binding of polymers to graphene represents an interesting alternative for the development of novel composite materials with a compendium of interfacial interactions. Through covalent linking, the concept of interface changes from a traditional view of interactions between components, such as van der Waals, hydrogen bonding, and so on, that is to say, at a polymer–filler interface, to a single compound concept where graphene forms an integral part of the polymeric chains. This feature article provides an overview of the strategies currently employed to functionalize graphene with polymers. We focus on the grafting‐from and grafting‐to methods used to bind polymers to graphene. The advantages and drawbacks, as well as the influence of each method on the final properties, are highlighted.  相似文献   

15.
Methods for the covalent modification in aqueous solution of poly-γ-D-glutamic acid from Bacillus licheniformis have been studied. Co-derivatization of a synthetic UV-absorbent amine and ethanolamine, using a water-soluble carbodi-imide coupling agent, yielded a water-soluble modified polymer. Derivatization of the polymer was accompanied by cleavage of the γ-linked polypeptide backbone, and a reduction in molecular mass from 170 to 10 kDa. A procedure was developed for the removal of noncovalently bound ligands by treatment with 5 M CaCl2. The polymer sidechains also reacted in aqueous solution with p-nitrophenyl acetate to form covalent linkages. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 1995–1999, 1998  相似文献   

16.
DMAKO-05, a novel dimethylation of alkannin oxime derivative, exhibits remarkable anticancer activity as well as excellent cellular selectivity and thus has been considered as a promising antineoplastic agent for colorectal carcinoma and melanoma. However, its potent cytotoxicity is not closely associated with reactive oxygen species (ROS) and bioreductive alkylation. Its specific antitumor target(s) has still remained elusive. To recognize the molecular target(s) of DMAKO-05 and its analogs, four biotinylated DMAKO derivatives were designed and prepared. The biotin moiety was successfully introduced in the molecule through a modified Mitsunobu reaction, which kept its anticancer activity. Moreover, the cellbased investigation demonstrated that replacement of the linker C4 chain with another alkyl chain (C6 or C8) gave rise to the enhancement of cytotoxicity. Among these biotinyl derivatives, both compound 16 and 8c exhibited more potent anticancer activity than DMAKO-05 against MCF-7 cells and were comparatively effective to alkannin toward HCT-15 cells. As expected, they might be thought as ideal chemical probes. Collectively, our present work could provide an available approach for the identification of the potential antineoplastic target(s) of DMAKO derivatives.  相似文献   

17.
蛋白质是参与各种生理过程的关键生物分子。选择性的蛋白质化学修饰为开发新型生物制药和复杂生物系统中单个蛋白质的功能研究提供了有力工具。核酸作为一种多功能的分子工具,近十年被广泛用于构建选择性的蛋白质修饰策略。在这类策略中,核酸可以:(i)作为模板来辅助反应基团与蛋白质靠近,提高有效反应浓度;(ii)作为导向系统通过结合兴趣蛋白(Proteins of interest,POI)实现共价修饰的选择性;(iii)作为催化剂增强邻近区域的蛋白质修饰反应。该综述着重介绍核酸介导蛋白质共价标记策略的研究进展,并以不同的导向系统为分类,介绍了这类标记策略的发展及主要应用。  相似文献   

18.
The chiral pair alkannin and shikonin (A/S) are potent pharmaceutical substances with a wide spectrum of biological activity; their enantiomeric ratio does not influence the major biological activity studied hitherto. Nevertheless, in pharmaceutical development and approval of chiral drugs from the Health and Regulatory Authorities, full documentation of methods of analysis of enantiomeric drugs, is required in order to evaluate the enantiomeric purity of starting materials and final products and to control the stability of enantiomers in pharmaceutical formulations under several experimental conditions. In the present study, the enantiomeric ratio of A/S was determined in several commercial samples of alkannin and shikonin and also the proportion of A/S derivatives in several Alkanna root samples, which are all used as active ingredients in pharmaceuticals. Light and air proved not to influence the enantiomeric ratio of A/S on a shikonin commercial sample, and temperature also did not alter the A/S ratio on shikonin and alkannin commercial samples. Microencapsulation of alkannin and shikonin commercial samples in ethylcellulose microspheres and also molecular inclusion of a shikonin commercial sample in beta-hydroxypropyl-cyclodextrin, which are used as drug delivery systems, did not alter the A/S enantiomeric ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号