首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we study the stability of a single transonic shock wave solution to the hyperbolic conservation laws with a resonant moving source. Compared with the previous results [W.-C. Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (9) (1999) 1075-1098; T.P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83 (2) (1982) 243-260] on this stability problem, in this paper, the transonic ith shock is assumed to be relatively strong and stable in the sense of Majda. Then the framework of [M. Lewicka, L1 stability of patterns of non-interacting large shock waves, Indiana Univ. Math. J. 49 (4) (2000) 1515-1537; M. Lewicka, Stability conditions for patterns of noninteracting large shock waves, SIAM J. Math. Anal. 32 (5) (2001) 1094-1116 (electronic)] can be applied. A new criterion is obtained to test whether such a shock is time asymptotically stable or not. And by constructing the Liu-Yang functional, one can prove the L1 stability of the shock under the stability condition. This is an extension of the result [S.-Y. Ha, T. Yang, L1 stability for systems of hyperbolic conservation laws with a resonant moving source, SIAM J. Math. Anal. 34 (5) (2003) 1226-1251 (electronic); W.-C. Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (9) (1999) 1075-1098] to a more general case.  相似文献   

2.
The purpose of this paper is to investigate the wave behavior of hyperbolic conservation laws with a moving source. When the speed of the source is close to one of the characteristic speeds of the system, nonlinear resonance occurs and instability may result. We will study solutions with a single transonic shock wave for a general system ut + f(u)x = g(x, u). Suppose that the ith characteristic speed is close to zero. We propose the following stability criteria: Here li and ri are the ith normalized left and right eigenvectors of , respectively. Through the local analysis on the evolution of the speed and strength of the transonic shock wave, the above criterion can be justified. It turns out that the speed of the transonic shock wave is monotone increasing (decreasing) most of the time in the unstable (stable) case. This is shown by introducing a global functional on nonlinear wave interactions, based on the Glimm scheme. In particular, together with the local analysis, we can study the shock speed globally. Such a global approach is absent in the previous works. Using this strategy, we prove the existence of solutions and verify the asymptotic stability (or instability). © 1999 John Wiley & Sons, Inc.  相似文献   

3.
This paper studies the asymptotic stability of traveling relaxation shock profiles for hyperbolic systems of conservation laws. Under a stability condition of subcharacteristic type the large time relaxation dynamics on the level of shocks is shown to be determined by the equilibrium conservation laws. The proof is due to the energy principle, using the weighted norms, the interaction of waves from various modes is treated by imposing suitable weight matrix.  相似文献   

4.
This study deals with the convergence of a numerical scheme for conservation laws including source terms. A splitting method for source term integration is presented. More precisely, the convergence of the numerical solution towards the entropy solution is proved in the scalar case. Because of the effect of source term, the constructed scheme is total variation bounded. Numerical experiments for one-dimensional shallow water equation are presented to demonstrate the performance of the scheme.  相似文献   

5.
We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. The convergence of the approximate solution toward a weak solution is established in the cases of first and second order accurate MUSCL relaxed methods.

  相似文献   


6.
7.
The general idea of moving mesh approaches is to improve the approximation quality and the numerical performance by redistributing a fixed number of discretization points. This is called rrefinement. The classical approaches are applied to partial differential equations on fixed domains. An extension to time-dependent (expanding) domains is presented. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We deal in this study with the convergence of a class of numerical schemes for scalar conservation laws including stiff source terms. We suppose that the source term is dissipative but it is not necessarily a Lipschitzian function. The convergence of the approximate solution towards the entropy solution is established for first and second order accurate MUSCL and for splitting semi-implicit methods.

  相似文献   


9.
10.
The stability of nonlinear explicit difference schemes with not, in general, open domains of the scheme operators are studied. For the case of path-connected, bounded, and Lipschitz domains, we establish the notion that a multi-level nonlinear explicit scheme is stable iff (if and only if) the corresponding scheme in variations is stable. A new modification of the central Lax–Friedrichs (LxF) scheme is developed to be of the second-order accuracy. The modified scheme is based on nonstaggered grids. A monotone piecewise cubic interpolation is used in the central scheme to give an accurate approximation for the model in question. The stability of the modified scheme is investigated. Some versions of the modified scheme are tested on several conservation laws, and the scheme is found to be accurate and robust. As applied to hyperbolic conservation laws with, in general, stiff source terms, it is constructed a second-order nonstaggered central scheme based on operator-splitting techniques.  相似文献   

11.
This article contains a survey of some important finite-difference methods for one-dimensional hyperbolic conservation laws. Weak solutions of hyperbolic conservation laws are introduced and the concept of entropy stability is discussed. Furthermore, the Riemann problem for hyperbolic conservation laws is solved. An introduction to finite-difference methods is given for which important concepts such as, e.g., conservativity, stability, and consistency are introduced. Godunov-type methods are elaborated for general systems of hyperbolic conservation laws. Finally, flux limiter methods are developed for the scalar nonlinear conservation law. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
13.
New first- and high-order centred methods for conservation lawsare presented. Convenient TVD conditions for constructing centredTVD schemes are then formulated and some useful results areproved. Two families of centred TVD schemes are constructedand extended to nonlinear systems. Some numerical results arealso presented.  相似文献   

14.
In this paper we first briefly review the very high order ADER methods for solving hyperbolic conservation laws. ADER methods use high order polynomial reconstruction of the solution and upwind fluxes as the building block. They use a first order upwind Godunov and the upwind second order weighted average (WAF) fluxes. As well known the upwind methods are more accurate than central schemes. However, the superior accuracy of the ADER upwind schemes comes at a cost, one must solve exactly or approximately the Riemann problems (RP). Conventional Riemann solvers are usually complex and are not available for many hyperbolic problems of practical interest. In this paper we propose to use two central fluxes, instead of upwind fluxes, as the building block in ADER scheme. These are the monotone first order Lax-Friedrich (LXF) and the third order TVD flux. The resulting schemes are called central ADER schemes. Accuracy of the new schemes is established. Numerical implementations of the new schemes are carried out on the scalar conservation laws with a linear flux, nonlinear convex flux and non-convex flux. The results demonstrate that the proposed scheme, with LXF flux, is comparable to those using first and second order upwind fluxes while the scheme, with third order TVD flux, is superior to those using upwind fluxes. When compared with the state of art ADER schemes, our central ADER schemes are faster, more accurate, Riemann solver free, very simple to implement and need less computer memory. A way to extend these schemes to general systems of nonlinear hyperbolic conservation laws in one and two dimensions is presented.  相似文献   

15.
In this work a first order accurate semi-conservative composite scheme is presented for hyperbolic conservation laws. The idea is to consider the non-conservative form of conservation law and utilize the explicit wave propagation direction to construct semi-conservative upwind scheme. This method captures the shock waves exactly with less numerical dissipation but generates unphysical rarefaction shocks in case of expansion waves with sonic points. It shows less dissipative nature of constructed scheme. In order to overcome it, we use the strategy of composite schemes. A very simple criteria based on wave speed direction is given to decide the iterations. The proposed method is applied to a variety of test problems and numerical results show accurate shock capturing and higher resolution for rarefaction fan.  相似文献   

16.
A class of semi-discrete third-order relaxation schemes are presented for relaxation systems which approximate systems of hyperbolic conservation laws. These schemes for the scalar conservation law are shown to satisfy the property of total variation diminishing (TVD) in the zero relaxation limit. A third-order TVD Runge–Kutta splitting method is developed for the temporal discretization of the semi-discrete schemes. Numerical results are given illustrating these schemes on one-dimensional nonlinear problems.  相似文献   

17.
Summary. This paper concerns the study of a relaxation scheme for hyperbolic systems of conservation laws. In particular, with the compensated compactness techniques, we prove a rigorous result of convergence of the approximate solutions toward an entropy solution of the equilibrium system, as the relaxation time and the mesh size tend to zero. Received September 29, 1998 / Revised version received December 20, 1999 / Published online August 24, 2000  相似文献   

18.
In this paper we study a special case of the initial value problem for a 2×2 system of nonstrictly hyperbolic conservation laws studied by Lefloch, whose solution does not belong to the class ofL functions always but may contain δ-measures as well: Lefloch's theory leaves open the possibility of nonuniqueness for some initial data. We give here a uniqueness criteria to select the entropy solution for the Riemann problem. We write the system in a matrix form and use a finite difference scheme of Lax to the initial value problem and obtain an explicit formula for the approximate solution. Then the solution of initial value problem is obtained as the limit of this approximate solution.  相似文献   

19.
We study the singular structure of a family of two dimensional non-self-similar global solutions and their interactions for quasilinear hyperbolic conservation laws. For the case when the initial discontinuity happens only on two disjoint unit circles and the initial data are two different constant states, global solutions are constructed and some new phenomena are discovered. In the analysis, we first construct the solution for 0 ≤ t T~*.Then, when T~*≤ t T′, we get a new shock wave between two rarefactions, and then, when t T′,another shock wave between two shock waves occurs. Finally, we give the large time behavior of the solution when t →∞. The technique does not involve dimensional reduction or coordinate transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号