首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
For CuO nanocrystals of size 6.6-37 nm, the exchange bias Heb and coercivity Hc are measured at 5 K in zero-field-cooled (ZFC) and field-cooled (FC at 50 kOe) samples and their variations investigated as a function of particle size D. The similar 1/D variations observed for the difference coercivity ΔHc=Hc(FC)−Hc(ZFC) and the interfacial exchange energy Δσ=HebMfD are discussed in terms of the ferromagnetic magnetization Mf being produced by the uncompensated surface Cu2+ spins in the otherwise antiferromagnetically ordered CuO nanoparticles. This leads to the observation that the experimentally measured ΔHc provides a good measure of Δσ in nanoparticle systems, with HebHc varying as 1/MfD.  相似文献   

2.
《Physics letters. A》2001,280(3):146-152
We report a computer simulation and integral equation study of fluid–fluid phase equilibria of nonadditive hard sphere binary mixture adsorbed in disordered hard sphere matrix. The mixture exhibits phase separation with critical density ρcf lower than its bulk counterpart. It is found that ρcf decreases with increasing both porosity and nonadditivity parameter.  相似文献   

3.
H. Gül 《实验传热》2013,26(1):24-37
An experimental study was performed focusing on heat transfer and friction coefficient associated with turbulent oscillating tube flow. For this goal an oscillating mechanism was designed. Experiments were conducted for the low oscillating frequency in the range of 0.008–1.988 Hz and dimensionless amplitude was chosen as X0 = 0.3, 0.6, and 0.9. Reynolds number was changed from 0.5 × 104 to 2.5 × 104. The bulk temperature of the fluid at the exit of the oscillating section was fond to be increasing with oscillating frequency and amplitude. For the oscillating cases, heat transfer enhancement is obtained 52% for f = 1.988 s?1, 40% for f = 1.320 s?1, and 28% for f = 0.008 s?1, in comparison with the smooth pipe at the highest Reynolds number. The results also showed that Nusselt number and friction coefficient also increased with increasing frequency and amplitude.  相似文献   

4.
A fractal model is presented based on the thermal-electrical analogy technique and statistical self-similarity of fractal saturated porous media. A dimensionless effective thermal conductivity of saturated fractal porous media is studied by the relationship between the dimensionless effective thermal conductivity and the geometrical parameters of porous media with no empirical constant. Through this study, it is shown that the dimensionless effective thermal conductivity decreases with the increase of porosity (?) and pore area fractal dimension (Df) when ks/kg>1. The opposite trends is observed when ks/kg<1. In addition, the dimensionless effective thermal conductivity decreases with increasing tortuous fractal dimension (Dt). The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data.  相似文献   

5.
The ac electrical properties of 5-10% Fe doped polycrystalline sample have been investigated by complex impedance analysis over the frequency and temperature ranges of 1-100 kHz and 77-300 K, respectively. The average normalized change (ΔZ′/Δf)/Z0 has been deduced for these Fe doped CMR samples which shows an increasing trend with iron doping. The most pronounced effect of frequencies is at Tc, with the increase of Fe doping it is observed that not only Tc is lowered substantially but also the height of the peaks of real part of impedance (Z′) is increased which in turn decreases considerably with the increase of the ac field. An equivalent circuit model, Rg(RgbCgb), i.e. a resistor-capacitor network, has been proposed to explain the impedance results at different temperatures. The plot between τ and 1/T gives a straight line from where relaxation time (τ0) has been deduced. The correlated barrier hopping (CBH) model has been employed and the binding energy of the defect states is estimated to be between 0.39 and 0.25 eV while the minimum hoping distance varies within the range of 2.93-5.21 Å for these 5-10% Fe doped LCM samples.  相似文献   

6.
It is found from a series of numerical simulations that a simple relation, ΔtΔfc=0.4α, holds between an amount of down-chirp (Δfc) and a pulsewidth (Δt) for pulses from an injection-modulated semiconductor laser having a known α-Parametef value. This relation is useful for estimating the amount of chirp existing in pulses. The validity of the relation is examined by a direct observation of chirped pulses using a combination of a streak camera and a spectrometer.  相似文献   

7.
To study the effects of surface roughness and contact load on the friction behavior and scratch resistance of polymers, a set of model thermoplastic olefins (TPO) systems with various surface roughness (Ra) levels were prepared and evaluated. It is found that a higher Ra corresponds to a lower surface friction coefficient (μs). At each level of Ra, μs gets larger as contact load increases, with a greater increase in μs as Ra level increases. It is also observed that with increasing contact load and increasing Ra, the μs tend to level off. In evaluating TPO scratch resistance, a lower μs would delay the onset of ductile drawing-induced fish-scale surface deformation feature, thereby raising the load required to cause scratch visibility. However, as the contact load is further increased, the μs evolves to become scratch coefficient of friction (SCOF) as significant sub-surface deformation and tip penetration occur and material displacement begins, i.e., ploughing. No dependence of Ra and μs on the critical load for the onset of ploughing is observed. In this work, the distinction between μs and SCOF will be illustrated. Approaches for improving scratch resistance of polymers via control of Ra are also discussed.  相似文献   

8.
In this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that solutions do not exist for larger shrinking rates and dual solutions exist when λ < −1.0.  相似文献   

9.
This article communicates the thermal performance, heat transfer rate, and friction factor of Al2O3/DI water nanofluids at different concentrations in a micro-finned tube with tube helical inserts for different twist ratios. The thermal performance, heat transfer coefficient, and friction of the present study is also compared with a plain tube for validation. From the study, it is identified that the micro-finned tube with tube insert performance is higher as compared with a plain tube. Similarly, an empirical relation for Nusselt number (Nu) and friction factor (f) is estimated for straight twisted tube and left-right combination. The deviation between experimental and theoretical values for left-right twist and straight twist is found as 3 and 7% for Nusselt number and 7 and 9% for friction factor, respectively. Similarly, while analyzing the thermal performance, it was found that the maximum performance achieved was with a micro-fin tube with left-right twist with nanofluid concentration of 0.2%.  相似文献   

10.
In the framework of information theory, a new method to determine T c , the kinetic energy component of the correlation energy density functional for atoms, is presented. This approach is based on Shannon entropy and information energy that are obtained by fractional occupation probabilities of natural atomic orbitals. It is indicated that the calculated Shannon entropy using discrete probabilities is an increasing function while information energy is a decreasing function of the number of electrons. An expression is proposed with explicit dependence on the Shannon entropy or information energy and atomic number for the purpose. Applications of formulas for estimation of T c values for neutral atoms up to Xe and their first positive and negative ions are then examined and validity of the proposed approach is numerically verified.  相似文献   

11.
Cluster based analysis show that the observable three-level YbB12 spin excitations character can be reproduced in the framework of the asymmetric variant of periodic Anderson model with a singlet ground state and two electrons per site. For the macroscopic system the effective Hamiltonian with the direct f-f exchange is justified and the dynamic spin susceptibility of f-electrons is found. It is shown that the lowest spin excitation dispersion has minimum at the antiferromagnetic vector as observed in the experiment. The distinctive feature of analysis is the using of singlet and triplet basis operators.  相似文献   

12.
We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas in two dimensions. Our formula generalizes the usual Einstein relation for a free Brownian motion to the context of two-dimensional gravity. We show the existence of a critical temperature Tc at which the diffusion coefficient vanishes. For T < Tc, the diffusion coefficient is negative and the gas undergoes gravitational collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a finite time. We also stress that the critical temperature Tc is different from the collapse temperature T* at which the partition function diverges. These quantities differ by a factor 1-1/N where N is the number of particles in the system. We provide clear evidence of this difference by explicitly solving the case N = 2. We also mention the analogy with the chemotactic aggregation of bacteria in biology, the formation of “atoms” in a two-dimensional (2D) plasma and the formation of dipoles or “supervortices” in 2D point vortex dynamics.  相似文献   

13.
In the UxLa1-xS system there is an abrupt loss of the long-range ferromagnetic ordering found in pure US at a critical concentration x c ∼ 0.57, which is far above the percolation limit. As the magnetic ground state in such a system can be strongly affected by small variations of the 5f localization, we have investigated a set of samples with different x by polarized neutron diffraction and X-ray magnetic circular dichroism (XMCD). The neutron results are consistent with early measurements performed on pure US. Even at the lowest U content (x = 0.15, below x c ) the shape of the induced form factor (f ( Q )) is comparable with that found for x = 1 and is well reproduced by either a U4+ or a U3+ state. The ratio between the orbital and the effective spin moments in the XMCD measurements confirms this result, but the evolution of the shape at the M5 edge suggests an abrupt change in the distribution of the electrons (holes) in the 5 f density of states around x c . Received 31 January 2001  相似文献   

14.
The maximum value of the light extinction coefficient μ, which can be observed in a dispersive medium with a relative refractive index n of the scattering particles, is studied within the framework of a quasi-crystalline approximation for nonabsorbing dispersive media consisting of monodisperse spherical scatterers. A change in the diffraction parameter x of the scattering particles and their volume concentration c v is accompanied by nonmonotonic variations of the extinction coefficient, and the function μ(x, c v ) exhibits several maxima. The dimensions and concentrations of particles are determined, for which the extinction coefficient reaches the absolute maximum μmax. The μmax value exhibits a monotonic growth with increasing relative refractive index n of the scattering particles. The conditions of validity of the Ioffe-Regel criterion of radiation localization have been studied. It is established that the localization in nonabsorbing dispersive media can be observed only for n ? 2.7. The intervals of x and c v in which the criterion of radiation localization is satisfied in dispersive media consisting of particles with n = 3.0 and 3.5 are determined.  相似文献   

15.
The influence of mixed convection boundary layer flow of a viscoelastic fluid over an isothermal horizontal circular cylinder has been analyzed. The boundary layer equations governing the problem are reduced to dimensionless nonlinear partial differential equations and then solved numerically using Keller-box method. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities are displayed against curvature parameter. Effects of mixed convection parameter and radiation-conduction parameter on skin friction coefficient and Nusselt number are illustrated through graphs and table. The boundary layer separation points along the surface of cylinder are also calculated with/without radiation, and a comparison is shown. The presence of radiation helps to reduce the skin friction coefficient in opposing flow case and enhances it for assisting flow case. The increase in value of radiation-conduction parameter helps increase the value of skin friction coefficient and Nusselt number for viscoelastic fluids. The boundary layer separation delays due to thermal radiation.  相似文献   

16.
Magnetoelastic properties of the Pr6Fe11Ga3 alloy are studied by magnetostriction and thermal expansion measurements. The effects of short- and long-range magnetic ordering processes about Curie temperature clearly appear in the temperature dependence of the spontaneous magnetostriction as two increasing steps with decreasing temperatures. Thermal variations of the total magnetocrystalline anisotropy introduce pronounce changes in the isofield curves of the forced magnetostriction as a negative minimum below 200 K, a compensation phenomena about 250 K, and a positive maximum between 250 K and Tc=320 K. The observed behavior of magnetostriction is discussed in terms of the competitive anisotropies of Pr and Fe sublattices and coupling magnetostrictive constants.  相似文献   

17.
This work proposes a mechanism for the physical processes underlying the wide practical application of the unique properties of a substance in a critical state—critical fluid (CF)—in contemporary technologies. According to the fluctuation theory of phase transitions (FTPT), this mechanism may be due to the fluctuation and structural characteristics of a critical fluid, which determine its equilibrium and kinetic properties. Among such characteristics are the system correlation radius Rs, the number of order parameter fluctuations N f ~ R s -3 per mole of critical fluid, and the fluctuation component of the thermodynamic potential F*f = N f k T c/(P c V c) = C 0 R s -3 . These structural characteristics are studied with the use of experimental gravity effect data, such as the altitude and temperature dependencies of the scattered light intensity I(z, t) in a heterogeneous substance (n-pentane) near the critical vaporization temperature. Using these results and the literature data on the formation of Al2O3 nanoparticles with the use of SC-H2O, the propagation velocity of substance molecules v f ≈ 106 cm/s is estimated for the origination and decay of order parameter fluctuations. It has been concluded that just such high propagation velocities of substance molecules most likely cause the unique properties of a critical fluid during their practical application in a number of engineering processes.  相似文献   

18.
We present an extensive experimental study and scaling analysis of friction of gelatin gels on glass. At low driving velocities, sliding occurs via propagation of periodic self-healing slip pulses whose velocity is limited by collective diffusion of the gel network. Healing can be attributed to a frictional instability occurring at the slip velocity V = V c. For V > V c, sliding is homogeneous and friction is ruled by the shear-thinning rheology of an interfacial layer of thickness of order the (nanometric) mesh size, containing a solution of polymer chain ends hanging from the network. In spite of its high degree of confinement, the rheology of this system does not differ qualitatively from known bulk ones. The observed ageing of the static friction threshold reveals the slow increase of adhesive bonding between chain ends and glass. Such structural ageing is compatible with the existence of a velocity-weakening regime at velocities smaller than V c, hence with the existence of the healing instability. Received: 7 March 2003 / Accepted: 2 May 2003 / Published online: 11 June 2003 RID="b" ID="b"e-mail: ronsin@gps.jussieu.fr  相似文献   

19.
The steady two-dimensional flow and heat transfer of a non-Newtonian power-law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the flow. Four different types of nanoparticles, namely copper (Cu), silver (Ag), alumina (Al 2 O 3) and titanium oxide (TiO 2) are considered by using sodium alginate (SA) as the base non-Newtonian fluid. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The transformed equations are solved numerically by using a shooting method with fourth-order Runge–Kutta integration scheme. The results show that the effect of viscosity on the heat transfer rate is remarkable only for relatively strong convective heating. Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number.  相似文献   

20.
The processes of magnetic field penetration into the ceramic samples of the HTSC YB2Cu3O~6.95 at T<T c are studied by the methods of internal friction and magnetization measurements. A clearly manifested correlation is observed between the field dependences of the internal friction spectrum parameters (the logarithmic damping decrement Q ?1 and the resonance frequency f) and the trapped magnetic flux ΔM. The magneto-mechanical approach we used reveals a significant difference in the field dependences of the densities of pinned (N p) and free (N f) Abrikosov vortices for H>H c1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号