首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In studies devoted to the theoretical and experimental investigation of longitudinal flow of a viscous fluid past corner regions, a corner formed by the intersection of two planes is usually considered [1–3]. In contrast, the present paper is concerned with the flow in the neighborhood of the line of intersection of a plane and a concave cylindrical surface (see Fig. 1). The asymptotic behavior of the Navier-Stokes equations at large Re is investigated for such a flow. Estimates are obtained for the velocity and characteristic scales of the flow. It is shown that curvature of one of the surfaces qualitatively changes the pattern of the longitudinal flow of a viscous fluid past a corner. The development of a three-dimensional boundary layer on a plane in the domain of influence of a concave cylindrical surface is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 160–165, March–April, 1981.  相似文献   

2.
Viscous fluid flow near the line of intersection of curved surfaces at large Re numbers is a topic of considerable interest. The intersection of two fixed planes has been the subject of many experimental and theoretical studies. This case is characterized by very small transverse velocities and by the fact that the corner does not affect the remoter parts of the flow [1–4]. The flows near intersecting curved surfaces have received very little attention, except for the particular case of the intersection of a concave cylindrical surface and a plane in an incompressible fluid flow. With reference to this example it has been shown that the curvature qualitatively affects the flow pattern not only near the line of intersection but also at a distance from it [5]. The present article is concerned with viscous fluid flow at Re1 near the line of intersection of arbitrary, relatively smooth surfaces in the presence of external body forces and, moreover, in the noninertial coordinate system moving with the exposed surfaces (for example, rotating surfaces). On the basis of an analysis of the Navier-Stokes equations and the energy equation as Re sufficient conditions are obtained for the development of intense transverse flows near the line of intersection, which also lead to a qualitative change in the flow pattern; it is shown that depending on the external forces and the geometric parameters of the surfaces various types of flow are possible; the relations determining the occurrence of a particular type of flow and the equations and necessary boundary conditions describing some of these flows are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 16–21, May–June, 1985.  相似文献   

3.
The heat transfer in subsonic high-temperature (T 2000°K) gas flow through a curved channel of rectangular cross section has been experimentally investigated. The local heat flow into the channel wall was measured by the modified gradient method, which consists in subdividing the walls by means of thin annular thermally-insulating partitions, measuring the temperature in the upper (gas) and lower (coolant) sections of the modules thus formed, and using these measurements to determine the local heat flux qw on the assumption that the thermal field in the module is homogeneous. The soundness of this method has been demonstrated theoretically and experimentally and the expediency of using it in the intensive wall cooling regime has been confirmed. The method is employed to find the local heat flux fields over the- entire surface of the channel. The integrated fluxes qw coincide to within 5% with the independently determined total increase in the enthalpy of the water in the cooling channels. A distinguishing feature of the investigation is the high relative curvature of the bend in the channel, which leads to the formation of a zone of intense separation on the convex (inner) wall. Three types of channel are examined. These differ with respect to the section beyond the bend which is either long or short or short with a contraction. A close correlation between the characteristics of the qw fields and the hydrodynamic effects is detected and explained. These effects comprise: separation and reattachment of the flow, secondary effects in the bend, the formation of an unclosed separation zone in the short outlet section, the localization of this zone when the outlet section includes a contraction, and specific gas dynamic effects near the intersection of the surfaces.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 93–99, May–June, 1989.  相似文献   

4.
An experimental study was made of the forced convection freezing characteristics on the convex wall of a return bend with a rectangular cross section. Observations were carried out for duct heights of 17 and 30 mm, a duct width of 300 mm, and a radius of curvature of 159 mm. The convex wall temperature was uniformly maintained below the freezing temperature of water, and the concave wall was insulated. It was found that a stepwise ice layer forms on the convex wall of a return bend and that the step position at the steady-state condition is closely dependent on both the water flow velocity and the cooling temperature ratio.  相似文献   

5.
The laminar flow of power-law and yield-stress fluids in 180° curved channels of rectangular cross section was studied experimentally and numerically in order to understand the effect of rheological fluid behavior on the Dean instability that appears beyond a critical condition in the flow. This leads to the apparition of Dean vortices that differ from the two corner vortices created by the channel wall curvature.Flow visualizations showed that the Dean vortices develop first in the near-wall zone on the concave (outer) wall, where the shear rate is higher and the viscosity weaker; then they penetrate into the centre of the channel cross section where power-law fluids have high viscosity and Bingham fluids are unyielded in laminar flow. Based on the complete formation on the concave wall of the new pairs of counter-rotating vortices (Dean vortices), the critical value of the Dean number decreases as the power-law index increases for the power-law fluids, and the Bingham number decreases for the Bingham fluids. For power-law fluids, a diagram of critical Dean numbers, based on the number of Dean vortices formed, was established for different axial positions. For the same flow conditions, the critical Dean number obtained using the axial velocity gradient criterion was smaller then that obtained with the visualization technique.  相似文献   

6.
Experiments have been performed to investigate the freezing heat transfer characteristics in a return bend with a rectangular cross section. The experiments were carried out for two kinds of duct heights of 30 and 50 mm under the fixed size of 300 mm in duct width and 159 mm in curvature radius of convex wall. Both the convex and concave walls of a return bend were kept less than the freezing temperature of water. It was found that the freezing characteristics on the convex wall are markedly different from those on the concave wall of a return bend, and that the cooling temperature ratio is one of the most important parameters on the forced-convection freezing heat transfer in a return bend.  相似文献   

7.
A study is made of the exhausting of a jet of viscous gas from a cylindrical channel into vacuum in the presence of a flat bounding surface outside the channel in the plane of its exit section. The problem is solved numerically using the complete system of Navier—Stokes equations. The developed flow model makes it possible to take into account the influence of an external medium into which the jet exhausts on the structure of the flow in the exit section of the channel, and also the influence of the subsonic part of the boundary layer in the channel on the flow field of the jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 122–128, January–February, 1981.  相似文献   

8.
V. A. Sepp 《Fluid Dynamics》1981,16(5):766-769
The results are given of experimental investigations of flow of gas (air) in a curvilinear cylindrical channel. Patterns of the streamlines near the wall and the separation region were obtained by blowing cold air through a transparent model. In an investigation of the flow of hightemperature gas, in which an electric arc heater was used to supply the thermal energy, the profiles of the total pressure and the stagnation temperature were measured at different sections of the channel. It was found that the deformation of the profiles after the bend ends earlier for the hot gas than for the cold. The heat flux increases sharply after the bend.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 154–157, September–October, 1981.I thank A. B. Vatazhin for helpful discussions.  相似文献   

9.
An approach known from the theory of matched asymptotic expansions involving the isolation of subregions with different scales is used to study flows which are assumed to be described by the boundary layer equations almost everywhere near the surface except for a fairly narrow zone in which the inflowing boundary layers interact. Two characteristic types of interaction are identified. An approximate theory describing the flow in the interaction zone, which makes it possible to locate the position of the interaction zone on the surface, is proposed. The interaction flow on the end wall of a vane channel is calculated subject to certain simplifications. The results of an experimental investigation of this flow are presented and it is shown that the theoretical model proposed describes the three-dimensional corner separation which occurs in the neighborhood of the line of intersection of the end wall and the convex edge of the vane.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 116–123, May–June, 1988.  相似文献   

10.
Integral parameters that characterize reversible and irreversible changes in the flux of the total pressure in channels with perforated walls are introduced. An experimental investigation was made of subsonic gas flow in curvilinear channels of rectangular cross section in the presence of suction of gas from a separation region of the flow formed on an internal (convex) strongly curved wall of the channel. The optimal position of the suction slit was determined and it was shown to be possible to reduce appreciably the loss in the channel and improve its gas-dynamic characteristics. Two-dimensional turbulent flow of an incompressible fluid in curvilinear channels in the presence of suction was simulated numerically. The mathematical model is based on the complete system of Navier-Stokes equations, additional differential equations for the energy of the turbulence and the rate of its dissipation, special correction equations to take into account the curvature of the streamlines, and model boundary conditions for the sections of the walls through which the suction of the fluid takes place.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 4, pp. 72–80, July–August, 1984.  相似文献   

11.
This paper reports the outcome of applying two different low‐Reynolds‐number eddy‐viscosity models to resolve the complex three‐dimensional motion that arises in turbulent flows in ducts with 90° bends. For the modelling of turbulence, the Launder and Sharma low‐Re k–ε model and a recently produced variant of the cubic non‐linear low‐Re k–ε model have been employed. In this paper, developing turbulent flow through two different 90° bends is examined: a square bend, and a rectangular bend with an aspect ratio of 6. The numerical results indicate that for the bend of square cross‐section the curvature induces a strong secondary flow, while for the rectangular cross‐section the secondary motion is confined to the corner regions. For both curved ducts, the secondary motion persists downstream of the bend and eventually slowly disappears. For the bend of square cross‐section, comparisons indicate that both turbulence models can produce reasonable predictions. For the bend of rectangular cross‐section, for which a wider range of data is available, while both turbulence models produce satisfactory predictions of the mean flow field, the non‐linear k–ε model returns superior predictions of the turbulence field and also of the pressure and friction coefficients. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The development of the reverse flow structure in the neighborhood of a corner in a viscous incompressible laminar flow at high Reynolds numbers is investigated numerically. It is found that as the angle of inclination increases the internal structure of the reverse flow zone becomes more complex as a result of secondary separation. The effect of the curvature of the surface is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 180–182, January–February, 1991.  相似文献   

13.
The method of matched asymptotic expansions is used to construct an approximate solution to the problem of the influence of narrow transverse slits on the hydrodynamic coefficients of a thin rectangular wing moving near a wall. The flow in the neighborhood of a slit is described by a local asymptotic solution satisfying the condition of continuity of the pressure on the leading edge of the slit and matched to the main solution. Results of the calculations illustrate the influence of the slits on the hydrodynamic characteristics of the wing at different Strouhal numbers and aspect ratios.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 122–128, November–December, 1980.  相似文献   

14.
For the law of flow in a porous medium with limiting gradient studied previously in [1], an exact solution is found for the problem formulated in [2] of the plane steady motion of an incompressible fluid in a channel with a rectangular step. Particular cases of the solution obtained are given; these represent the solutions of the problem of flow past a broken wall and of motion from a point source in a strip.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 76–78, January–February, 1985.  相似文献   

15.
A solution is given to the plane problem of the flow of a conducting gas across a homogeneous magnetic field in a magnetogasdynamic channel taking account of the Hall effect at small magnetic Reynolds numbers. The channel is formed by two long electrodes, and the cross section of the channel varies slightly and periodically along the gas flow. It is assumed that the electromagnetic forces are small. It is shown that the current distribution in the channel is nonuniform to a consider able degree and that inverse currents can form at the electrodes, with both subsonic and supersonic flows of the conducting gas. Transverse motion of the gas, due to a change in the cross section of the channel, leads to an increase of Joule energy losses. In [1] the current distribution was obtained in a flat channel formed by infinite dielectric walls, with the flow of a steady-state stream of plasma through the channel across a homogeneous magnetic field. With interaction between the flow and the magnetic field, closed current loops develop in the channel.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 26–33, November–December, 1970.  相似文献   

16.
A study is made of two unsteady axisymmetric problems in the determination of the flow potential of an incompressible fluid outside a surface formed by the rotation of a contour. In the first problem the dimensions of the curve are assumed to be small in comparison with the distance to the axis of symmetry. In this problem methods similar to those used for thin cavities [1] are used to find the asymptotic behavior of the plane flow near the contour. In the second problem the motion of the contour takes place near a cylindrical wall, and it consists of an arc of a circle and a straight segment. This problem is solved by the method of averaging proposed by Yakimov in one of his articles. It is shown that in the neighborhood of the point at infinity this potential behaves asymptotically as a three-dimensional source for a half-space, and in the neighborhood of the slit as a plane flow, the main additional terms being the same as those obtained in the first problem by using Green's theorem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 167–169, November–December, 1985.Inconclusion, the author thanks Yu. L. Yakimov and R. L. Kreps for the interest and attention they have shown to the study.  相似文献   

17.
Two-dimensional steady rarefied-gas channel flow between two parallel walls, from an evaporating face to a perfectly absorbing plane end face, is studied. The vapor is considered to be a monatomic gas. The corresponding problem for the kinetic equation with collision integral in BGK form is formulated and solved numerically by two different finite-difference methods. Attention is focused on the calculation of the total gas flow rate through the channel cross-section. The structure of the gas channel flow as a function of the flow rarefaction, the channel length, and the ratio of the evaporation temperature to the wall temperature is studied.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 150–158, January–February, 1996.  相似文献   

18.
We present the results of an experimental study of the reflection of a plane stationary shock wave with Mach number in the range 1.21–1.35 from a rigid cylindrical concave wall. The experiments were carried out in a shock tube. In experimental shock tube technology the reflection of a shock wave from a rigid wall is often used for obtaining high temperatures [1]. This circumstance is associated with the fact that the temperature behind the reflected wave is significantly higher than that behind the incident wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 33–39, July–August, 1970.  相似文献   

19.
The method of mergeable asymptotic expansions has recently been used effectively in investigations devoted to the study of boundary layer interaction with an external inviscid flow at high subcritical Reynolds numbers Re. The asymptotic analysis permits obtaining a limit pattern of the flow around a solid as Re þ, and determining the similarity and quantitative regularity laws which are in good agreement with experimental results. Thus by using the method of mergeable asymptotic expansions it is shown in [1–4] that near sites with high local curvature of the body contour and flow separation and attachment points, an interaction domain appears that has a small length on the order of Re-3/8. In this flow domain, which has a three-layer structure, the pressure distribution in a first approximation already depends on the change in boundary-layer displacement thickness, while the induced pressure gradient, in turn, influences the flow in the boundary layer. An analogous situation occurs in the neighborhood of the trailing edge of a flat plate where an interaction domain also appears [5, 6]. The flow in the neighborhood of the trailing edge of a flat plate around which a supersonic viscous gas flows was examined in [7]. Numerical results in this paper show that the friction stress on the plate surface remains positive everywhere in the interaction domain, and grows on approaching the trailing edge. The supersonic flow around the trailing edge of a flat plate at a small angle of attack was investigated in [8, 9], Supersonic flow of a viscous gas in the neighborhood of the trailing edge of a flat plate at zero angle of attack is examined in [10], but with different velocity values in the inviscid part of the flow on the upper and lower sides of the plate. The more general problem of the flow around the trailing edge of a profile with small relative thickness is investigated in this paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 36–42, May–June, 1981.  相似文献   

20.
In the framework of the Navier-Stokes equations, a numerical solution is found to the problem of longitudinal (axisymmetric) flow of a viscous perfect heat conducting gas past a cylinder with a flat front end at subsonic and transonic velocities of the oncoming flow. The flow in the neighborhood of the corner of the cylinder is investigated and a study made of the occurrence and development of detached flow along the side of the cylinder. Tie heat fluxes to the surface of the cylinder are determined, and the influence of the temperature of the wall of the cylinder on the development of the separation is found. The investigations yield the critical Reynolds number Re0 for the occurrence of a detached flow as a function of the Mach number of the oncoming flow for the investigated bodies.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–10, March–April, 1979.I am grateful to Yu. A. Dem'yanov for discussing the work and for a number of valuable comments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号