首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The oxidation of 1-phenyl-2-thiourea (PTU) by chlorite was studied in aqueous acidic media. The reaction is extremely complex with reaction dynamics strongly influenced by the pH of reaction medium. In excess chlorite concentrations the reaction stoichiometry involves the complete desulfurization of PTU to yield a urea residue and sulfate: 2ClO2- + PhN(H)CSNH2 + H2O --> SO4(2-) + PhN(H)CONH2 + 2Cl- + 2H+. In excess PTU, mixtures of sulfinic and sulfonic acids are formed. The reaction was followed spectrophotometrically by observing the formation of chlorine dioxide which is formed from the reaction of the reactive intermediate HOCl and chlorite: 2ClO2- + HOCl + H+ --> 2ClO2(aq) + Cl- + H2O. The complexity of the ClO2- - PTU reaction arises from the fact that the reaction of ClO2 with PTU is slow enough to allow the accumulation of ClO2 in the presence of PTU. Hence the formation of ClO2 was observed to be oligooscillatory with transient formation of ClO2 even in conditions of excess oxidant. The reaction showed complex acid dependence with acid catalysis in pH conditions higher than pKa of HClO2 and acid retardation in pH conditions of less than 2.0. The rate of oxidation of PTU was given by -d[PTU]/dt = k1[ClO2-][PTU] + k2[HClO2][PTU] with the rate law: -d[PTU]/dt = [Cl(III)](T)[PTU]0/K(a1) + [H+] [k1K(a1) + k2[H+]]; where [Cl(III)]T is the sum of chlorite and chlorous acid and K(a1) is the acid dissociation constant for chlorous acid. The following bimolecular rate constants were evaluated; k1 = 31.5+/-2.3 M(-1) s(-1) and k2 = 114+/-7 M(-1) s(-1). The direct reaction of ClO2 with PTU was autocatalytic in low acid concentrations with a stoichiometric ratio of 8:5; 8ClO2 + 5PhN(H)CSNH2 + 9H2O --> 5SO4(2-) + 5PhN(H)CONH2 + 8Cl- + 18H+. The proposed mechanism implicates HOCl as a major intermediate whose autocatalytic production determined the observed global dynamics of the reaction. A comprehensive 29-reaction scheme is evoked to describe the complex reaction dynamics.  相似文献   

2.
The effect of a single water molecule on the OH + HOCl reaction has been investigated. The naked reaction, the reaction without water, has two elementary reaction paths, depending on how the hydroxyl radical approaches the HOCl molecule. In both cases, the reaction begins with the formation of prereactive hydrogen bond complexes before the abstraction of the hydrogen by the hydroxyl radical. When water is added, the products of the reaction do not change, and the reaction becomes quite complex yielding six different reaction paths. Interestingly, a geometrical rearrangement occurs in the prereactive hydrogen bonded region, which prepares the HOCl moiety to react with the hydroxyl radical. The rate constant for the reaction without water is computed to be 2.2 × 10(-13) cm(3) molecule(-1) s(-1) at room temperature, which is in good agreement with experimental values. The reaction between ClOH···H(2)O and OH is estimated to be slower than the naked reaction by 4-5 orders of magnitude. Although, the reaction between ClOH and the H(2)O···HO complex is also predicted to be slower, it is up to 2.2 times faster than the naked reaction at altitudes below 6 km. Another intriguing finding of this work is an interesting three-body interchange reaction that can occur, that is HOCl + HO···H(2)O → HOCl···H(2)O + OH.  相似文献   

3.
The mechanism of the reaction of the sulfur dioxide (SO(2)) with four stabilized Criegee intermediates (stabCI-CH(3)-OO, stabCI-OO, stabCIx-OO, and stabCH(2)OO) produced via the ozonolysis of limonene have been investigated using ab initio and DFT (density functional theory) methods. It has been shown that the intermediate adduct formed by the initiation of these reactions may be followed by two different reaction pathways such as H migration reaction to form carboxylic acids and rearrangement of oxygen to produce the sulfur trioxide (SO(3)) from the terminal oxygen of the COO group and SO(2). We found that the reaction of stabCI-OO and stabCH(2)OO with SO(2) can occur via both the aforementioned scenarios, whereas that of stabCI-CH(3)-OO and stabCIx-OO with SO(2) is limited to the second pathway only due to the absence of migrating H atoms. It has been shown that at the CCSD(T)/6-31G(d) + CF level of theory the activation energies of six reaction pathways are in the range of 14.18-22.59 kcal mol(-1), with the reaction between stabCIx-OO and SO(2) as the most favorable pathway of 14.18 kcal mol(-1) activation energy and that the reaction of stabCI-OO and stabCH(2)OO with SO(2) occurs mainly via the second reaction path. The thermochemical analysis of the reaction between SO(2) and stabilized Criegee intermediates indicates that the reaction of SO(2) and stabilized Criegee intermediates formed from the exocyclic primary ozonide decomposition is the main pathway of the SO(3) formation. This is likely to explain the large (~100%) difference in the production rate in the favor of the exocyclic compounds observed in recent experiments on the formation of H(2)SO(4) from exocyclic and endocyclic compounds.  相似文献   

4.
HNCO is a convenient photolytic source of NCO and NH radicals for laboratory kinetics studies of elementary reaction[1] and plays an important role in the combustion and atmosphere chemistry. It can re- move deleterious compounds rapidly from exhausted ga…  相似文献   

5.
Superoxide reductase is a nonheme iron metalloenzyme that detoxifies superoxide anion radicals O(2)(?-) in some microorganisms. Its catalytic mechanism was previously proposed to involve a single ferric iron (hydro)peroxo intermediate, which is protonated to form the reaction product H(2)O(2). Here, we show by pulse radiolysis that the mutation of the well-conserved lysine 48 into isoleucine in the SOR from Desulfoarculus baarsii dramatically affects its reaction with O(2)(?-). Although the first reaction intermediate and its decay are not affected by the mutation, H(2)O(2) is no longer the reaction product. In addition, in contrast to the wild-type SOR, the lysine mutant catalyzes a two-electron oxidation of an olefin into epoxide in the presence of H(2)O(2), suggesting the formation of iron-oxo intermediate species in this mutant. In agreement with the recent X-ray structures of the peroxide intermediates trapped in a SOR crystal, these data support the involvement of lysine 48 in the specific protonation of the proximal oxygen of the peroxide intermediate to generate H(2)O(2), thus avoiding formation of iron-oxo species, as is observed in cytochrome P450. In addition, we proposed that the first reaction intermediate observed by pulse radiolysis is a ferrous-iron superoxo species, in agreement with TD-DFT calculations of the absorption spectrum of this intermediate. A new reaction scheme for the catalytical mechanism of SOR with O(2)(?-) is presented in which ferrous iron-superoxo and ferric hydroperoxide species are reaction intermediates, and the lysine 48 plays a key role in the control of the evolution of iron peroxide intermediate to form H(2)O(2).  相似文献   

6.
The reactions of NO and/or NO2- with three water-soluble cobalt porphyrins [Co(III)(P)(H2O)2]n, where P = TPPS, TCPP, and TMPyP, were studied in detail. At pH < 3, the reaction with NO proceeds through a single reaction step. From the kinetic data and activation parameters, the [Co(III)(P)(NO)(H2O)]n complex is proposed to be the primary product of the reaction with NO. This complex reacts further with a second NO molecule through an inner-sphere electron-transfer reaction to generate the final product, [Co(III)(P)(NO-)](n-1). At pH > 3, although a single reaction step is also observed, a systematic study as a function of the NO and NO2- concentrations revealed that two reaction steps are operative. In the first, NO2- and NO compete to substitute coordinated water in [Co(III)(P)(H2O)2]n to yield [Co(III)(P)(NO)(H2O)]n and [Co(III)(P)(NO2-)(H2O)](n-1) as the primary reaction products. Only the nitrite complex could be detected and no final product formation was observed during the reaction. It is proposed that [Co(III)(P)(NO)(H2O)]n rapidly reacts with NO2- to form the nitrite complex, which in the second reaction step reacts with another NO molecule to generate the final product through an inner-sphere electron-transfer reaction. The reported results are relevant for the interaction of vitamin B(12a) with NO and NO2-.  相似文献   

7.
A simple and selective voltammetric method based on selenium-gold film modified glassy carbon electrode has been developed for investigating electrochemical reaction mechanism of selenocystine. With N2 saturated, redox reactions between selenocystine (SeC) and selenocysteine (SeCys) were judged to be two simple electron-transfer processes. With air saturated, the reduction reaction was diagnosed to be EC catalytic reaction (the chemical oxidation reaction of the SeCys by O2 (C) following the electron-transfer reaction (E)) and oxidation reaction is a simple electron-transfer process. With pure O2 saturated, only reduction peak was observed and the reaction was judged to be EC catalytic reaction. The electron-transfer numbers of redox reaction were calculated to be 2 by chronocoulometry and rotating disk electrode.  相似文献   

8.
Pawlak Z  Pawlak AS 《Talanta》1999,48(2):347-353
In iodometric determination of sulfide two reactions are taking place when alkaline solution is added to HCl acid-iodine. The main oxidation reaction (1), H(2)S+I(2)=2HI+S; and side reaction of sulfide (2), S(-2)+4I(2)+8OH(-)=SO(4)(2-)+8I(-)+4H(2)O. Preference of reaction (2) over (1) is dependent on pH increasing to >7. When sulfide solution of pH 9 was mixed with HCl acid-iodine, the recovery exceeded 120%, but the recovery of a solution with a pH of 13 exceeded 200%. To eliminate the side reaction in iodometric titration, the sulfide solution must be acidic when it is mixed with HCl-iodine. To avoid the side reaction (2), the pH of sulfide solutions were adjusted with acetic acid to pH 5.5, mixed with HCl-iodine solution and then titrated with standard thiosulfate with precision and accuracy <+/-3%.  相似文献   

9.
A metal-free route involving a sequential reaction of 2-alknylbenzoate and aryl-1,2-diamine is described for the generation of 2-(quinoxalin-2-yl)benzoate. The sequential reaction combines NBS-mediated diketonization of 2-alknylbenzoate and condensation reaction with aryl-1,2-diamine, and proceeds smoothly under mild reaction conditions and an array of 2-(quinoxalin-2-yl)benzoate is achieved with high efficiency and excellent functional group tolerance. Mechanism studies indicate oxygen transfer reaction is observed and water is incorporated into neighboring ester group.  相似文献   

10.
The reaction of internal alkynes 1 with CO and pyridin-2-ylmethanol (2) in the presence of Rh(4)(CO)(12) results in a double-hydroesterification leading to 1,4-dicarboxylate esters 3. The reaction does not proceed via two consecutive hydroesterifications of alkynes, but the intermediacy of ketene intermediates is proposed. The coordination of the pyridine nitrogen in 2 to rhodium is essential for the reaction to proceed. [reaction: see text]  相似文献   

11.
A novel reaction pathway of 2,3-allenoates with an electrophile (TsNBr2) in the presence of K2CO3 to produce (1E,2E)-3-bromo-4-oxo-N'-tosyl-2-alkenoxylimidic acid ethyl esters is reported. The reaction proceeds in a highly stereoselective fashion. A plausible mechanism to rationalize this reaction is also proposed.  相似文献   

12.
Lü Ling-Ling 《结构化学》2008,27(9):1039-1044
The insertion reaction mechanism of CF2 with CH2O was investigated at the B3LYP/6-311G(d)//MP2/6-311G(d) level. The geometric conformations at each stationary point in reaction potential surface were fully optimized and the transition states were verified by intrinsic reaction coordinate (IRC) and frequency analysis. The energies of all reactants were calculated with CCSD(T)/6-311G(d)//G2MP2 methods. Results indicated that the P1 reaction route with difuoroaldehyde as product is the dominant reaction pathway, which exhibits nucleophilic character. According to NBO analysis, the starting point of insertion reaction is the interaction between carbene LP(C3) and formaldehyde π(Cl-O2). Besides, the thermodynamic and dynamic properties of dominated reaction (1) at different temperature were studied with statistic thermodynamic method and Eyring transition state theory adjusted by Wigner means, from which the proper temperature (500- 1200 K) of reaction (1) could be estimated. Finally, the thermo- dynamic and dynamic properties of insertion reaction mechanisms (CF2, CX2 (X = Cl, Br) with CH2O) were compared and discussed.  相似文献   

13.
NO,程序升温表面反应(TPSR),NO-CH4反应,Co-MgO  相似文献   

14.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than  相似文献   

15.
N,N-二甲基羟基胺与V(Ⅴ)氧化还原反应动力学及机理研究   总被引:3,自引:0,他引:3  
二甲基羟胺;反应机理;N;N-二甲基羟基胺与V(Ⅴ)氧化还原反应动力学及机理研究  相似文献   

16.
It has been shown that 1,1'-oxalyldiimidazole (ODI) is formed as an intermediate in the imidazole-catalyzed reaction of oxalate esters with hydrogen peroxide. Therefore, the kinetics of the chemiluminescence reaction of 1,1'-oxalyldiimidazole (ODI) with hydrogen peroxide in the presence of a fluorophore was investigated in order to further elucidate the mechanism of the peroxyoxalate chemiluminescence reaction. The effects of concentrations of ODI, hydrogen peroxide, imidazole (ImH), the general-base catalysts lutidine and collidine, and temperature on the chemiluminescence profile and relative quantum efficiency in the solvent acetonitrile were determined using the stopped-flow technique. Pseudo-first-order rate constant measurements were made for concentrations of either H2O2 or ODI in large excess. All of the reaction kinetics are consistent with a mechanism in which the reaction is initiated by a base-catalyzed substitution of hydrogen peroxide for imidazole in ODI to form an imidazoyl peracid (Im(CO)2OOH). In the presence of a large excess of H2O2, this intermediate rapidly decays with both a zero- and first-order dependence on the H2O2 concentration. It is proposed that the zero-order process reflects a cyclization of this intermediate to form a species capable of exciting a fluorophore via the "chemically initiated electron exchange mechanism" (CIEEL), while the first-order process results from the substitution of an additional molecule of hydrogen peroxide to the imidazoyl peracid to form dihydroperoxyoxalate, reducing the observed quantum yield. Under conditions of a large excess of ODI, the reaction is more than 1 order of magnitude more efficient at producing light, and the quantum yield increases linearly with increasing ODI concentration. Again, it is proposed that the slow initiating step of the reaction involves the substitution of H2O2 for imidazole to form the imidazoyl peracid. This intermediate may decay by either cyclization or by reaction with another ODI molecule to form a cyclic peroxide that is much more efficient at energy transfer with the fluorophore. The reaction kinetics clearly distinguishes two separate pathways for the chemiluminescent reaction.  相似文献   

17.
The oxidation reactions of N-acetylthiourea (ACTU) by chlorite and chlorine dioxide were studied in slightly acidic media. The ACTU-ClO(2)(-) reaction has a complex dependence on acid with acid catalysis in pH > 2 followed by acid retardation in higher acid conditions. In excess chlorite conditions the reaction is characterized by a very short induction period followed by a sudden and rapid formation of chlorine dioxide and sulfate. In some ratios of oxidant to reductant mixtures, oligo-oscillatory formation of chlorine dioxide is observed. The stoichiometry of the reaction is 2:1, with a complete desulfurization of the ACTU thiocarbamide to produce the corresponding urea product: 2ClO(2)(-) + CH(3)CONH(NH(2))C=S + H(2)O --> CH(3)CONH(NH(2))C=O + SO(4)(2-) + 2Cl(-) + 2H(+) (A). The reaction of chlorine dioxide and ACTU is extremely rapid and autocatalytic. The stoichiometry of this reaction is 8ClO(2)(aq) + 5CH(3)CONH(NH(2))C=S + 9H(2)O --> 5CH(3)CONH(NH(2))C=O + 5SO(4)(2-) + 8Cl(-) + 18H(+) (B). The ACTU-ClO(2)(-) reaction shows a much stronger HOCl autocatalysis than that which has been observed with other oxychlorine-thiocarbamide reactions. The reaction of chlorine dioxide with ACTU involves the initial formation of an adduct which hydrolyses to eliminate an unstable oxychlorine intermediate HClO(2)(-) which then combines with another ClO(2) molecule to produce and accumulate ClO(2)(-). The oxidation of ACTU involves the successive oxidation of the sulfur center through the sulfenic and sulfinic acids. Oxidation of the sulfinic acid by chlorine dioxide proceeds directly to sulfate bypassing the sulfonic acid. Sulfonic acids are inert to further oxidation and are only oxidized to sulfate via an initial hydrolysis reaction to yield bisulfite, which is then rapidly oxidized. Chlorine dioxide production after the induction period is due to the reaction of the intermediate HOCl species with ClO(2)(-). Oligo-oscillatory behavior arises from the fact that reactions that form ClO(2) are comparable in magnitude to those that consume ClO(2), and hence the assertion of each set of reactions is based on availability of reagents that fuel them. A computer simulation study involving 30 elementary and composite reactions gave a good fit to the induction period observed in the formation of chlorine dioxide and in the autocatalytic consumption of ACTU in its oxidation by ClO(2).  相似文献   

18.
The kinetics of the glyoxal + HO(2) reaction have been investigated using computational chemistry and statistical reaction rate theory techniques, with consideration of a novel pathway that results in the conversion of HO(2) to OH. Glyoxal is shown to react with HO(2) to form an α-hydroxyperoxy radical with additional α-carbonyl functionality. Intramolecular H atom abstraction from the carbonyl moiety proceeds with a relatively low barrier, facilitating decomposition to OH + CO + HC(O)OH (formic acid). Time-dependent master equation simulations demonstrate that direct reaction to form OH is relatively slow at ambient temperature. The major reaction product is predicted to be collisionally deactivated HC(OH)(OO)CHO, which predominantly dissociates to reform the reactants under low-NO(x) conditions. The mechanism described here for the conversion of OH to HO(2) is available to a diverse range of carbonyls, including methylglyoxal, glycolaldehyde, hydroxyacetone, and glyoxylic acid, and energy surfaces are reported for the reaction of these species with HO(2).  相似文献   

19.
胡海泉  刘成卜 《物理化学学报》1998,14(12):1104-1107
主要用作致冷剂和发泡剂的氯氟烃(CFCs)是破坏臭氧层的主要物质之一.对氯氟烃类化合物及其降解产物(包括光解、光氧化、化学反应产物等)在大气中行为问题的研究是大气化学研究的重要内容.前人[1-3]从理论和实验两方面研究了自由基与臭氧的反应机制,但是氯氟烃光解过程中  相似文献   

20.
The catalytic water formation reaction on Pt(111) was investigated by kinetic Monte Carlo simulations, where the interaction energy between reaction species and the high mobility of H(2)O molecule was considered. Results obtained clearly reproduce the scanning tunneling microscopy images which show that the reaction proceeds via traveling the reaction fronts on the O-covered Pt(111) surface by creating H(2)O islands backwards. The reaction front is a mixed layer of OH and H(2)O with a (square root 3 x square root 3)R30(o) structure. Coverage change during the reaction is also reproduced in which the reaction consists of three characteristic processes, as observed by the previous experiments. The simulation also revealed that the proton transfer from H(2)O to OH plays an important role to propagate the water formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号