首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV–vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10−13 to 4.5 × 10−6 mol/L. The detection limit (3σ) of this method has decreased to pico-molar level.  相似文献   

2.
A simple protocol to distinguish enantiomers is extremely intriguing and useful. In this study, we propose a low-cost, facile, sensitive method for visual chiral recognition of enantimers. It is based on the inherent chirality of gold nanoparticles (AuNPs), and the unmodified AuNPs are used as chiral selector for d- and l-Tryptophan (Trp). In the presence of d-Trp, an appreciable red-to-blue color change of AuNPs solution can be observed, whereas no color change is found in the presence of l-Trp. The method can be used to detect d-Trp in the range of 0.2–10 μM, and the limit of detection is 0.1 μM. The chiral assay described in this work is easily readout with the naked eye or using a UV-vis spectrometer. Furthermore, the AuNPs can selectively adsorb d-Trp, and simple centrifugation can allow the precipitation of d-Trp with AuNPs and leave a net excess of the other enantiomer in solution, thus resulting in enantioseparation. In this method, AuNPs do not need any labeling or modifying with chiral molecules. The method is more attractive because of its high sensitivity, low cost, ready availability and simple manipulation.  相似文献   

3.
Huang H  Li L  Zhou G  Liu Z  Ma Q  Feng Y  Zeng G  Tinnefeld P  He Z 《Talanta》2011,85(2):1013-1019
Melamine that can cause serious damage to the organs of animal or human beings was found to bind to polythymine via hydrogen bonding. With this novel discovery, colorimetric detection of melamine based on label-free and labeled gold nanoparticles was developed, respectively. Both of the methods revealed good selectivity for melamine over other components that may exist in milk and good anti-influence ability. The raw milk samples were pretreated according to the National standard method combined with a solid phase extraction monolithic column. The accurate quantification of melamine as low as 41.7 nM and 46.5 nM was obtained, respectively. It also guarantees fast and reliable readout with naked eyes, making visual detection possible. Further comparison between label-free and labeled based methods was discussed in this paper.  相似文献   

4.
We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg2+) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg2+ aptamer is rich in thymine (T) and readily forms T–Hg2+–T configuration in the presence of Hg2+. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg2+-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg2+ concentration through a five-decade range of 1 × 10−4 mol L−1 to 1 × 10−9 mol L−1. Even with the naked eye, we could identify micromolar Hg2+ concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg2+ over other metal cations including K+, Ba2+, Ni2+, Pb2+, Cu2+, Cd2+, Mg2+, Ca2+, Zn2+, Al3+, and Fe3+. The major advantages of this Hg2+ assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg2+ detection.  相似文献   

5.
Su H  Fan H  Ai S  Wu N  Fan H  Bian P  Liu J 《Talanta》2011,85(3):1338-1343
A novel and sensitive colorimetric method for determination of melamine in milk samples was developed by a 3-mercapto-1-propanesulfonate-modified gold nanoparticles (MPS-GNPs) probe. Melamine molecule has multiple -NH2 groups. These functional groups can interact with MPS to form strong hydrogen bonding and induce the aggregation of the MPS-GNPs, resulting in a dramatic color change from red to blue. Therefore, the concentration of melamine in milk samples can be quantitatively detected by the naked eyes or a UV-vis spectrometer. Moreover, investigations have revealed that the sensitivity of the detection could be clearly improved by adding NaCl to the modified GNPs solution, which leads to a more rapid color change in the NaCl-optimized GNPs system. It is worth noting that the absorption ratio (A650/A520) of the modified GNPs in the NaCl-optimized system exhibited a linear correlation with melamine concentration and the limit of detection is 8 nM, well below the safety limit (1 ppm for infant formula in China).  相似文献   

6.
A label-free strategy based on Fenton reaction with unmodified gold nanoparticles (AuNPs) as probe is demonstrated for ascorbic acid (AA) sensing. AuNPs is stable in the presence of single stranded DNA (ssDNA) which prevents salt-induced aggregation of AuNPs in solution. The hydroxyl free radicals generated by Fenton reaction lead to ssDNA cleavage into different sequence fragments which induce aggregation of AuNPs to produce a red-to-blue color change. As an efficient biological antioxidant, AA could effectively scavenge free radicals to avoid the cleavage of ssDNA, so that it prevents color change of the AuNPs solution. Thus, the color change of AuNPs in the presence and absence of AA provides a new approach for the detection of AA. The absorbance ratio at two wavelengths, A670/A520, decreases linearly with AA content within 1–15 μM, giving rise to a detection limit of 0.3 μM and a RSD of 2.8% (10 μM). The color display of AuNPs solution makes it feasible for the estimation of AA content by naked eye visualization. Moreover, based on Fenton reaction and unmodified gold nanoparticles, a multiple logic gate system includes two logic operations, i.e., INHIBIT and NOR, has been designed with small molecules (AA, l-cysteine, glutathione) as inputs and the colorimetric changes of AuNPs solution as outputs.  相似文献   

7.
A well-ordered Au-nanorod array with a controlled tip ring diameter (Au_NRsd) was fabricated using the focused ion beam method. Au_NRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au_NRsd and Ag NPs/Au_NRsd was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au_NRsd was estimated by an enhancement factor of ≈107 in magnitude, which increased ≈1012 in magnitude for that on Ag NPs/Au_NRsd. A highly SERS-active Ag NPs/Au_NRsd was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10−3 to 10−12 M) in water or milk solution upon Au_NRsd or Ag NPs/Au_NRsd were well distinguished. The peaks at 680 and 702 cm−1 for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm−1 was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au_NRsd) or Ag (i.e., Ag NPs/Au_NRsd) surface. At the interface of Ag NPs/Au_NRsd and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au_NRsd is very promising to be used as a fast and sensitive tool for screening MEL in complex matrices such as adulteration in e.g., food and pharmaceutical products.  相似文献   

8.
With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical “signature” of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM–1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD = 3.6–12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without specialized equipment. The use of the sensor by non-experts for a rapid assessment of natural products in field testing is envisioned. Importantly, we demonstrate for the first time that analyte-mediated growth of nanomaterials directly on the paper surface could open new opportunities in paper-based analytical devices.  相似文献   

9.
In this paper, we demonstrate a simple and sensitive colorimetric detection of cysteine based on the cysteine-mediated color change of ssDNA-stabilized gold nanoparticles (AuNPs). Cysteine is capable of absorbing onto AuNPs surfaces via the strong interaction between its thiol group and gold. ssDNA molecules which stabilize AuNPs against salt-induced aggregation are removed away by cysteine encapsulation on the AuNPs surfaces, resulting in a characteristic color change of AuNPs from red to blue as soon as salt is added. The ratio of absorptions at 640 to 525 nm (A 640/A 525) is linear dependent on the cysteine concentration in the range from 0.1 to 5 μM. Furthermore, amino acids other than cysteine cannot mediate the color change under the identical conditions due to the absence of thiol groups, suggesting the selectivity of the proposed method toward cysteine. The employment of complicated protocols and sophisticated processes such as the preparation of modified AuNPs are successfully avoided in design to realize the simple and low-cost cysteine detection; and the high sensitivity and low cost of the method is favorable for practical applications. Figure In the presence of cysteine, cysteine binds to the AuNPs surface via Au-S bond, spontaneously driving ssDNA molecules away from the nanoparticles, which leads to the AuNPs aggregation under the condition of NaCl introduction, and the corresponding color change from red to blue. However, the presence of other amino acids results in no color change due to the absence of thiol groups. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The migration of melamine monomers from food contact materials has aroused particular attention since the 2008 melamine-tainted milk scandal in China. However, the determination of melamine monomer’s migratory quantity (MMMQ) has remained an open question because of the complex sample pretreatment and the low sensitivity. Based on the hydrogen bonding interaction between DNA thymine and melamine, this paper described a simple and rapid method focusing on the measurement of MMMQ from melamine tableware by gold nanoparticles (GNPs) and dynamic light scattering (DLS). With the presence of probe DNA (p-DNA), the GNPs were stable in NaCl solution (0.06 M), whereas they became aggregated when the p-DNA hybridized with melamine. The change in the hydrodynamic diameter of GNPs could be detected by DLS technology. Under the optimal conditions, the average diameter increased linearly with the concentration of melamine over the range from 5.0 to 320.0 μg L−1, and showed a detection limit of 2.0 μg  L−1 (3σ/slope). The MMMQ was investigated within a range from 6.00 × 10−4 to 2.58 × 10−1 mg dm−2 (n ≥ 3) in four different food simulants at different temperatures and time points. The results suggest that the DLS method has great potential in the analysis of the migration of melamine monomers.  相似文献   

11.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection.  相似文献   

12.
Compound 1 as an electron donor-acceptor compound with N,N-dimethylaniline and quinone units was designed for a highly selective colorimetric determination of thiol-containing amino acids and peptides, by making use of the unique reactivity of thiol towards quinone. Compound 1 shows a strong intramolecular charge transfer (ICT) band around 582 nm; but, it decreased after addition of either cysteine (Cys) or glutathione (GSH). Moreover, the ICT band intensity at 582 nm decreased linearly with the increasing concentrations of Cys or GSH. The interference from other amino acids can be neglected. Therefore, compound 1 can be employed as a selective colorimetric visual chemosensor for thiol-containing amino acids and peptides.  相似文献   

13.
We report our findings that natural flavonoids such as quercetin, daizeol and puerarin can act as reductants for the enlargement of gold nanoparticles (Au-NPs). Consequently, the UV–vis spectra of a solution containing Au-NPs will be gradually changed, and the molecules of the natural herbs can be detected by making use of changes in the UV–visible spectra. Furthermore, we have prepared a self-assembled monolayer modified electrode by modifying cysteamine on a gold substrate electrode, which is further modified by some Au-NP seeds. When the modified electrode is immersed in a solution containing flavonoids and tetrachloroauric acid as a gold source for the growth of the Au-NP seeds, with the increase of the concentration of flavonoids, the Au-NP seeds on the surface of the modified electrode can be enlarged to varying degrees. As a result, the peak currents in the corresponding cyclic voltammograms are inversely decreased, and simultaneously the peak separation is increased. Therefore, an electrochemical method to detect flavonoids is also proposed. Compared with the optical detection method, the electrochemical method has an extraordinarily lower detection limit and a significantly extended detection range. Moreover, the optical and electrochemical experimental results can be also used to assay and compare the relative antioxidant activities of the flavonoids. Figure Enlargement of Au nanoparticles by flavonoids at cysteamine modified electrode  相似文献   

14.
A simple but highly sensitive colorimetric method was developed to detect cancer cells based on aptamer–cell interaction. Cancer cells were able to capture nucleolin aptamers (AS 1411) through affinity interaction between AS 1411 and nucleolin receptors that are over expressed in cancer cells, The specific binding of AS 1411 to the target cells triggered the removal of aptamers from the solution. Therefore no aptamer remained in the solution to hybridize with complementary ssDNA-AuNP probes as a result the solution color is red. In the absence of target cells or the presence of normal cells, ssDNA-AuNP probes and aptamers were coexisted in solution and the aptamers assembled DNA-AuNPs, produced a purple solution. UV–vis spectrometry demonstrated that this hybridization-based method exhibited selective colorimetric responses to the presence or absence of target cells, which is detectable with naked eye. The linear response for MCF-7 cells in a concentration range from 10 to 105 cells was obtained with a detection limit of 10 cells. The proposed method could be extended to detect other cells and showed potential applications in cancer cell detection and early cancer diagnosis.  相似文献   

15.
An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations.  相似文献   

16.
With the completion of the human genome-sequencing project, there has been a resulting change in the focus of studies from genomics to proteomics. By utilizing the inherent advantages of molecular beacon probes and biofunctionalized nanoparticles, a series of novel principles, methods and techniques have been exploited for bioanalytical and biomedical studies. This review mainly discusses the applications of molecular beacon probes and biofunctionalized nanoparticles-based technologies for realtime, in-situ...  相似文献   

17.
Shen XC  Jiang LF  Liang H  Lu X  Zhang LJ  Liu XY 《Talanta》2006,69(2):456-462
A novel method for the determination of 6-mercaptopurine (6MP) has been developed based on fluorescence enhancement of Au nanoparticles (AuNPs). The fluorescent AuNPs with mean diameter of ∼15 nm were synthesized in aqueous solution, exhibiting the stable maximum emission at 367 nm, under the excitation at wavelength of 264 nm. The AuNPs self-assembly with 6MP were characterized with transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, fluorescence and surface-enhanced Raman scattering (SERS) spectroscopy. The results revealed that the surface attachment through versatile binding sites of S10, N3, N9 and N7 atoms in 6MP produced the interparticle coupling and formed aggregates of AuNPs. As a result, the fluorescence emission enhancement was significantly observed upon AuNPs self-assembly with 6MP. The fluorimetric determination under optimal conditions indicated that 6MP could be quantified in good linearity range of 6.35 × 10−8 to 3.05 × 10−7 M, with a low detection limit of 4.82 × 10−10 M. The relative standard deviation (n = 11) was 1.8% at 2.54 × 10−8 M 6MP concentration level. The proposed method was successfully applied for the determination of 6MP in spiked human urine. The probable fluorescence enhancement mechanism was also discussed there.  相似文献   

18.
A sensitive electrochemiluminescence (ECL) sensor for melamine analysis was fabricated based on Ru(bpy)32+-doped silica (Ru(bpy)32+@SiO2) nanoparticles and graphene composite. Spherical Ru(bpy)32+@SiO2 nanoparticles with uniform size about 55 nm were prepared by the reverse microemulsion method. Since per Ru(bpy)32+@SiO2 nanoparticle encapsulated a great deal of Ru(bpy)32+, the ECL intensity has been greatly enhanced, which resulted in high sensitivity. Due to its extraordinary electric conductivity, graphene improved the conductivity and accelerated the electron transfer rate. In addition, graphene could work as electronic channel improving the efficient luminophor amount participating in the ECL reaction, which further enhanced the ECL signal. This proposed sensor was used to melamine analysis and the ECL intensity was proportional to logarithmic melamine concentration range from 1 × 10−13 M to 1 × 10−8 M with the detect limit as low as 1 × 10−13 M. In application to detect melamine in milk, satisfactory recoveries could be obtained, which indicated this sensor having potential application in melamine analysis in real samples.  相似文献   

19.
Hu SQ  Xie JW  Xu QH  Rong KT  Shen GL  Yu RQ 《Talanta》2003,61(6):769-777
An electrochemical immunosensor for the direct determination of paraoxon has been developed based on the biocomposites of gold nanoparticles loaded with paraoxon antibodies. The biocomposites are immobilized on the glassy carbon electrode (GCE) using Nafion membrane. On the immunosensor prepared paraoxon shows well-shaped CV with reduction and oxidation peaks located −0.08 and −0.03 mV versus SCE, respectively. The detection of paraoxon performed at −0.03 mV is beneficial for guaranteeing sufficient selectivity. The amount of the biocomposite consisting gold nanoparticles loaded with antibodies and the volume of Nafion solution used for fabricating the immunosensor have been studied to ensure sensitivity and conductivity of the immunosensor. The immunosensor has been employed for monitoring the concentrations of paraoxon in aqueous samples up to 1920 μg l−1 with a detection limit of 12 μg l−1.  相似文献   

20.
In this study, a novel polymeric material functionalized with gold nanoparticles (AuNPs) was prepared as solid-phase extraction (SPE) sorbent for isolation of proteins. The sorbent was synthesized from a powdered poly(glycidyl-co-ethylene dimethacrylate) monolith, and modified with ammonia, followed by immobilization of AuNPs on the pore surface of the material. To evaluate the performance of this SPE support, proteins were selected as test solutes, being the extraction conditions and other parameters (loading capacity and regenerative ability of sorbent) established. The results indicated that this sorbent could be employed to selectively capture proteins according to their pI, on the basis of the strong affinity of these biomacromolecules towards to AuNPs surface. The applicability of this sorbent was demonstrated by isolating protein species of interest (bovine serum albumin, cytochrome c and lectins in European mistletoe leaves), followed by SDS-PAGE analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号