首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Explicit formulas are obtained for the maximum possible values of the derivatives f (k)(x), x ∈ (−1, 1), k ∈ {0, 1, ..., r − 1}, for functions f that vanish together with their (absolutely continuous) derivatives of order up to ≤ r − 1 at the points ±1 and are such that $ \left\| {f^{\left( r \right)} } \right\|_{L_2 ( - 1,1)} \leqslant 1 $ \left\| {f^{\left( r \right)} } \right\|_{L_2 ( - 1,1)} \leqslant 1 . As a corollary, it is shown that the first eigenvalue λ 1,r of the operator (−D 2) r with these boundary conditions is $ \sqrt 2 $ \sqrt 2 (2r)! (1 + O(1/r)), r → ∞.  相似文献   

2.
Let $ \mathfrak{S} $ \mathfrak{S} be a locally compact semigroup, ω be a weight function on $ \mathfrak{S} $ \mathfrak{S} , and M a ($ \mathfrak{S} $ \mathfrak{S} , ω) be the weighted semigroup algebra of $ \mathfrak{S} $ \mathfrak{S} . Let L 0 ($ \mathfrak{S} $ \mathfrak{S} ; M a ($ \mathfrak{S} $ \mathfrak{S} , ω)) be the C*-algebra of all M a ($ \mathfrak{S} $ \mathfrak{S} , ω)-measurable functions g on $ \mathfrak{S} $ \mathfrak{S} such that g/ω vanishes at infinity. We introduce and study a strict topology β 1($ \mathfrak{S} $ \mathfrak{S} , ω) on M a ($ \mathfrak{S} $ \mathfrak{S} , ω) and show that the Banach space L 0 ($ \mathfrak{S} $ \mathfrak{S} ; M a ($ \mathfrak{S} $ \mathfrak{S} , ω)) can be identified with the dual of M a ($ \mathfrak{S} $ \mathfrak{S} , ω) endowed with β 1($ \mathfrak{S} $ \mathfrak{S} , ω). We finally investigate some properties of the locally convex topology β 1($ \mathfrak{S} $ \mathfrak{S} , ω) on M a ($ \mathfrak{S} $ \mathfrak{S} , ω).  相似文献   

3.
Let A be a closed linear operator on a Banach space $ \mathfrak{B} $ \mathfrak{B} over the field Ω of complex p-adic numbers having an inverse operator defined on the whole $ \mathfrak{B} $ \mathfrak{B} , and f be a locally holomorphic at 0 $ \mathfrak{B} $ \mathfrak{B} -valued vector function. The problem of existence and uniqueness of a locally holomorphic at 0 solution of the differential equation y (m)Ay = f is considered in this paper. In particular, it is shown that this problem is solvable under the condition $ \mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\left\| {A^{ - n} } \right\|}} $ \mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\left\| {A^{ - n} } \right\|}} = 0. It is proved also that if the vector-function f is entire, then there exists a unique entire solution of this equation. Moreover, the necessary and sufficient conditions for the Cauchy problem for such an equation to be correctly posed in the class of locally holomorphic functions are presented.  相似文献   

4.
Let X,X(1),X(2),... be independent identically distributed random variables with mean zero and a finite variance. Put S(n) = X(1) + ... + X(n), n = 1, 2,..., and define the Markov stopping time η y = inf {n ≥ 1: S(n) ≥ y} of the first crossing a level y ≥ 0 by the random walk S(n), n = 1, 2,.... In the case $ \mathbb{E} $ \mathbb{E} |X|3 < ∞, the following relation was obtained in [8]: $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) as n → ∞, where the constant R and the bounded sequence ν n were calculated in an explicit form. Moreover, there were obtained necessary and sufficient conditions for the limit existence $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0, and there was found a representation for H(y). The present paper was motivated by the following reason. In [8], the authors unfortunately did not cite papers [1, 5] where the above-mentioned relations were obtained under weaker restrictions. Namely, it was proved in [5] the existence of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0 under the condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ only; In [1], an explicit form of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) was found under the same condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ in the case when the summand X has an arithmetic distribution. In the present paper, we prove that the main assertion in [5] fails and we correct the original proof. It worth noting that this corrected version was formulated in [8] as a conjecture.  相似文献   

5.
The system of exponents $ \left\{ {e^{i\lambda _n t} } \right\}_{n \in \mathbb{Z}} $ \left\{ {e^{i\lambda _n t} } \right\}_{n \in \mathbb{Z}} is considered. A sufficient condition for a Riesz-property basis in the weighted space L p (−π, π) is obtained.  相似文献   

6.
Let n ≥ 1 be an integer and let P n be the class of polynomials P of degree at most n satisfying z n P(1/z) = P(z) for all zC. Moreover, let r be an integer with 1 ≤ rn. Then we have for all PP n :
$ \alpha _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt} \leqslant \int_0^{2\pi } {|P^r (e^{it} )|^2 dt} \leqslant \beta _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt} $ \alpha _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt} \leqslant \int_0^{2\pi } {|P^r (e^{it} )|^2 dt} \leqslant \beta _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt}   相似文献   

7.
Let λ be a real number such that 0 < λ < 1. We establish asymptotic formulas for the weighted real moments Σ nx R λ (n)(1 − n/x), where R(n) =$ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu - 1} } $ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu - 1} } is the Atanassov strong restrictive factor function and n =$ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } } $ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } } is the prime factorization of n.  相似文献   

8.
In this paper,we obtain the boundedness of the parabolic singular integral operator T with kernel in L(logL)1/γ(Sn-1) on Triebel-Lizorkin spaces.Moreover,we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q(f) from ∥f∥ F˙p0,q(Rn) into Lp(Rn).  相似文献   

9.
We consider a new Sobolev type function space called the space with multiweighted derivatives $ W_{p,\bar \alpha }^n $ W_{p,\bar \alpha }^n , where $ \bar \alpha $ \bar \alpha = (α 0, α 1,…, α n ), α i ∈ ℝ, i = 0, 1,…, n, and $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} ,
$ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n $ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n   相似文献   

10.
In this paper, we introduce the subfamilies H m ($ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n)) of holomorphic mappings defined on the Lie ball $ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n) which reduce to the family of holomorphic mappings and the family of locally biholomorphic mappings when m = 1 and m → +∞, respectively. Various distortion theorems for holomophic mappings H m ($ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n)) are established. The distortion theorems coincide with Liu and Minda’s as the special case of the unit disk. When m = 1 and m → +∞, the distortion theorems reduce to the results obtained by Gong for $ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n), respectively. Moreover, our method is different. As an application, the bounds for Bloch constants of H m ($ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n)) are given.  相似文献   

11.
We provide a characterization of the Banach spaces X with a Schauder basis (e n ) n∈ℕ which have the property that the dual space X* is naturally isomorphic to the space L diag(X) of diagonal operators with respect to (e n ) n∈ℕ. We also construct a Hereditarily Indecomposable Banach space $ \mathfrak{X} $ \mathfrak{X} D with a Schauder basis (e n ) n∈ℕ such that $ \mathfrak{X} $ \mathfrak{X} *D is isometric to L diag($ \mathfrak{X} $ \mathfrak{X} D) with these Banach algebras being Hereditarily Indecomposable. Finally, we show that every TL diag($ \mathfrak{X} $ \mathfrak{X} D) is of the form T = λI + K, where K is a compact operator.  相似文献   

12.
We study some properties of a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice $ \mathfrak{A} $ \mathfrak{A} with the cardinality of the continuum, i.e., of an upper semilattice of m-degrees. In particular, it is shown that the quotient semilattice of such a semilattice modulo any countable ideal will be also $ \mathfrak{c} $ \mathfrak{c} -universal. In addition, there exists an isomorphism $ \mathfrak{A} $ \mathfrak{A} such that $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} will be also $ \mathfrak{c} $ \mathfrak{c} -universal. Furthermore, a property of the group of its automorphisms is obtained. To study properties of this semilattice, the technique and methods of admissible sets are used. More exactly, it is shown that the semilattice of mΣ-degrees $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} on the hereditarily finite superstructure $ \mathbb{H}\mathbb{F} $ \mathbb{H}\mathbb{F} (S) over a countable set S will be a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice with the cardinality of the continuum.  相似文献   

13.
The existence of a faithful modular representation of a left module $ \mathfrak{X} $ \mathfrak{X} over a C*-algebra $ \mathfrak{A}_\# $ \mathfrak{A}_\# possessing sufficiently many traces is proved.  相似文献   

14.
Let G be a finite group, and let $ \mathfrak{F} $ \mathfrak{F} be a formation of finite groups. We say that a subgroup H of G is $ \mathfrak{F}_h $ \mathfrak{F}_h -normal in G if there exists a normal subgroup T of G such that HT is a normal Hall subgroup of G and (HT)H G /H G is contained in the $ \mathfrak{F} $ \mathfrak{F} -hypercenter $ Z_\infty ^\mathfrak{F} $ Z_\infty ^\mathfrak{F} (G/H G ) of G/H G . In this paper, we obtain some results about the $ \mathfrak{F}_h $ \mathfrak{F}_h -normal subgroups and then use them to study the structure of finite groups.  相似文献   

15.
Let u be a weak solution of (-△)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω  Rn. Then, the main goal of this paper is to prove the following a priori estimate:‖u‖ Wω2 m,p(Ω) ≤ C ‖f‖ Lωp (Ω),where ω is a weight in the Muckenhoupt class Ap.  相似文献   

16.
Let E be a real reflexive Banach space which admits a weakly sequentially continuous duality mapping from E to E^*, and C be a nonempty closed convex subset of E. Let {T(t) : t ≥ 0} be a nonexpansive semigroup on C such that F :=∩t≥0 Fix(T(t)) ≠ 0, and f : C → C be a fixed contractive mapping. If {αn}, {βn}, {an}, {bn}, {tn} satisfy certain appropriate conditions, then we suggest and analyze the two modified iterative processes as:{yn=αnxn+(1-αn)T(tn)xn,xn=βnf(xn)+(1-βn)yn
{u0∈C,vn=anun+(1-an)T(tn)un,un+1=bnf(un)+(1-bn)vn
We prove that the approximate solutions obtained from these methods converge strongly to q ∈∩t≥0 Fix(T(t)), which is a unique solution in F to the following variational inequality:
〈(I-f)q,j(q-u)〉≤0 u∈F Our results extend and improve the corresponding ones of Suzuki [Proc. Amer. Math. Soc., 131, 2133-2136 (2002)], and Kim and XU [Nonlear Analysis, 61, 51-60 (2005)] and Chen and He [Appl. Math. Lett., 20, 751-757 (2007)].  相似文献   

17.
Imaginary powers associated to the Laguerre differential operator $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) are investigated. It is proved that for every multi-index α = (α1,...α d ) such that α i ≧ −1/2, α i ∉ (−1/2, 1/2), the imaginary powers $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} , of a self-adjoint extension of L α, are Calderón-Zygmund operators. Consequently, mapping properties of $ \mathcal{L}_\alpha ^{ - i\gamma } $ \mathcal{L}_\alpha ^{ - i\gamma } follow by the general theory.  相似文献   

18.
We obtain characterizations (and prove the corresponding equivalence of norms) of function spaces B pq sm ($ \mathbb{I} $ \mathbb{I} k ) and L pq sm ($ \mathbb{I} $ \mathbb{I} k ) of Nikol’skii-Besov and Lizorkin-Triebel types, respectively, in terms of representations of functions in these spaces by Fourier series with respect to a multiple system $ \mathcal{W}_m^\mathbb{I} $ \mathcal{W}_m^\mathbb{I} of Meyer wavelets and in terms of sequences of the Fourier coefficients with respect to this system. We establish order-sharp estimates for the approximation of functions in B pq sm ($ \mathbb{I} $ \mathbb{I} ) and L pq sm ($ \mathbb{I} $ \mathbb{I} k ) by special partial sums of these series in the metric of L r ($ \mathbb{I} $ \mathbb{I} k ) for a number of relations between the parameters s, p, q, r, and m (s = (s 1, ..., s n ) ∈ ℝ+ n , 1 ≤ p, q, r ≤ ∞, m = (m 1, ..., m n ) ∈ ℕ n , k = m 1 +... + m n , and $ \mathbb{I} $ \mathbb{I} = ℝ or $ \mathbb{T} $ \mathbb{T} ). In the periodic case, we study the Fourier widths of these function classes.  相似文献   

19.
We introduce a spanning set of Beilinson–Lusztig–MacPherson type, {A(j, r)} A,j , for affine quantum Schur algebras S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)} and construct a linearly independent set {A(j)} A,j for an associated algebra [^(K)]\vartriangle(n){{{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n)} . We then establish explicitly some multiplication formulas of simple generators E\vartriangleh,h+1(0){E^\vartriangle_{h,h+1}}(\mathbf{0}) by an arbitrary element A(j) in [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle(n)}} via the corresponding formulas in S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle(n, r)}} , and compare these formulas with the multiplication formulas between a simple module and an arbitrary module in the Ringel–Hall algebras \mathfrak H\vartriangle(n){{{\boldsymbol{\mathfrak H}_\vartriangle(n)}}} associated with cyclic quivers. This allows us to use the triangular relation between monomial and PBW type bases for \mathfrak H\vartriangle(n){{\boldsymbol{\mathfrak H}}_\vartriangle}(n) established in Deng and Du (Adv Math 191:276–304, 2005) to derive similar triangular relations for S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)} and [^(K)]\vartriangle(n){{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n) . Using these relations, we then show that the subspace \mathfrak A\vartriangle(n){{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)} of [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)} spanned by {A(j)} A,j contains the quantum enveloping algebra U\vartriangle(n){{{\mathbf U}_\vartriangle}(n)} of affine type A as a subalgebra. As an application, we prove that, when this construction is applied to quantum Schur algebras S(n,r){\boldsymbol{\mathcal S}(n,r)} , the resulting subspace \mathfrak A\vartriangle(n){{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}} is in fact a subalgebra which is isomorphic to the quantum enveloping algebra of \mathfrakgln{\mathfrak{gl}_n} . We conjecture that \mathfrak A\vartriangle(n){{{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}}} is a subalgebra of [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)} .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号