首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In the present communication we report on the radiation induced grafting of methyl methacrylate (MMA) onto irradiated isotactic polypropylene film (IPP) by Peroxidation method to prepared grafted membrane (IPP-g-MMA). The radioactive isotope 60Co was used as the source of gamma radiation. A plausible mechanism of grafting has been proposed. Optimum conditions pertaining to maximum percentage of grafting were evaluated as a function of different reaction parameters such as radiation dose, inhibitor concentration, monomer concentration, reaction time and reaction temperature respectively. Maximum percentage of grafting (85%) was obtained at [radiation dose] = 25 kGy, [inhibitor concentration] = 0.04 wt%, [MMA] = 6 wt%, [Reaction Temperature] = 60 °C in a [Reaction time] of 120 min. The evidence of grafted membrane was characterized by Fourier transform infrared spectroscopy, Atomic force microscopy method, Scanning electron microscopy which indicates that MMA has been grafted onto IPP. Hydrolysis of the grafted membranes in 1 N NaOH transformed ester groups of the grafted membranes to carboxylic acid and hydroxyl groups to form hydrolyzed grafted membranes. Hydrolyzed grafted membranes were investigated for their swelling behavior. Swelling properties of the hydrolyzed grafted membranes were performed in different solvents such as water, N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). Maximum percentage swelling value of IPP-g-MMA was observed in pure DMSO, followed by DMF and water.  相似文献   

2.
A novel thermo-sensitive switching membrane has been prepared by radiation-induced simultaneous grafting N-isopropylacrylamide (NIPAAm) onto brominated poly(2,6-dimethyl-1,4-phenylene oxide) BPPO. In order to attain a high grafting degree, the effects of dose, dose rate, concentration of NIPAAm, concentration of inhibitor Cu2+, membrane thickness and solvents were investigated. The grafting process was characterized by FTIR spectroscopy and the highest grafting degree obtained was 7.87%. The thermo-sensitive property of the grafted membrane was measured by water flux (20–48 °C). The results showed that the grafted membrane could respond instantly to environmental temperature changes, and there was a sharp change around the lower critical solution temperature as it is normally seen in PNIPAAm hydrogel.  相似文献   

3.
The grafting of 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto two model hydrocarbons, squalane and n-eicosane, and to linear low density polyethylene (LLDPE) has been investigated. The results of the study indicate that a high reaction temperature, 160°C, and a low concentration of monomer, less than 0.3 M, are optimum conditions for the grafting reaction. Reaction products, which consisted of grafted hydrocarbons and poly(DMAEMA), were separated by solvent extraction and vacuum distillation; samples were then analyzed by NMR and FTIR spectroscopy and size exclusion chromatography. 1H-NMR spectroscopy indicates that grafted squalane contained approximately 6 DMAEMA units per squalane residue. 1H- and 13C-NMR and molecular weight studies strongly suggest that the grafts onto the model hydrocarbons consist of single DMAEMA units. Results of the melt grafting of DMAEMA onto LLDPE show that the grafting efficiency and degree of grafting are substantially lower than were expected from the model system. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Some properties of the membranes obtained by preirradiation grafting of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer (PFA) films have been investigated. The dimensional change caused by grafting and swelling behavior, water uptake, electrical conductivity, and mechanical properties of the grafted films were found to increase as the grafting proceeds. The influence of the preparation conditions (such as preirradiation dose, monomer concentration, grafting temperature, and film thickness) on those properties was studied. These properties were found to be dependent mainly on the degree of grafting regardless of grafting conditions, except at higher monomer concentration (>40 wt %). The electric conductivity and mechanical properties for the membranes obtained at higher AAc concentrations were lower than those obtained at lower ones. Analysis by x-ray microscopy of the grafted films revealed that the grafting begins at the part close to the film surface and proceeds into the central part with progressive diffusion of monomer to give finally homogeneous distribution of the electrolytes in the whole bulk of the polymer. The membranes show good electrochemical and mechanical properties which make them acceptable for practical use as cation-exchange membranes.  相似文献   

5.
Acrylic acid was grafted onto FEP by simultaneous radiation technique and the resulting membranes were sulfonated. Results of dynamic mechanical properties of the membranes showed that storage modulus and temperature at tan δ(max) increases on grafting. X‐ray diffraction (XRD) analysis of the grafted and sulfonated membranes showed decreasing trend in crystallinity with increase in degree of grafting. From scanning electron microscopy (SEM) studies it was confirmed that grafting takes place by the front mechanism. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Mutual radiation grafting technique has been applied to carry out grafting of acrylamide (AAm) onto guar gum (GG) using high-energy Co60 γ radiation to enhance its flocculating properties for industrial effluents. The grafted product was characterized using analytical probes like elemental analysis, thermal analysis, Fourier transformed infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The grafting extent was observed to decrease with the dose rate and increase with the concentration of AAm. Thermo gravimetric analysis (TGA) of grafted and ungrafted samples indicated better stability of grafted product. γ and microwave radiation effect on grafted and virgin GG has also been reported.  相似文献   

7.
Graft-polymerization of acrylic acid (AAc) monomer onto poly(tetraflouroethylene-perflouro vinyl ether) (PFA) copolymer film was carried out using gamma irradiation technique to synthesize grafted copolymer film PFA-g-PAAc (PFA-COOH). The effect of the dose on the degree of grafting of AAc onto PFA film was investigated. The results showed that the degree of grafting increases with increasing the irradiation dose. The grafted [PFA-COOH] film was chemically modified by reaction with aniline to produce modified [PFA-CO-NH-ph] film, followed by sulphonation reaction to introduce sulfonic acid (SO3H) groups to get other modified [PFA-CO-NH-ph-SO3H] film. The chemical structures of the grafted and modified films were identified by FT-IR, XRD, and SEM. It is of particular interest to measure the electrical conductivity of grafted and modified membranes as a function of degree of grafting. It was found that the conductivity of the grafted films increases with increasing the degree of grafting, however a slightly increase in conductivity was observed in [PFA-CO-NH-ph-SO3H] sample. The electrical conductivity property of the modified PFA membranes suggests their possible use for fuel cell applications.  相似文献   

8.
Binary graft copolymerization of thermosensitive 2-(dimethylamino) ethyl methacrylate (DMAEMA) and pH sensitive acrylic acid (AAc) monomers onto polypropylene (PP) films was carried out by a two step method using a 60Co gamma radiation source. The PP film was initially modified by grafting of DMAEMA through a direct method. The DMAEMA-g-PP film obtained was then subjected to radiation grafting of AAc by the pre-irradiation method to give (DMAEMA-g-PP)-g-AAc. The optimal conditions, such as reaction time, reaction temperature, monomer concentration, and dose were studied. The grafted samples were verified by the FTIR-ATR spectroscopy and swelling; thermal properties were analyzed by DSC and TGA.  相似文献   

9.
Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) was studied for synthesis of ion exchange membranes. Radiation-induced grafting of styrene onto ETFE films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. The ETFE films were irradiated at 20 kGy dose at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established at 14 days when the films were remained in styrene/toluene 1:1 v/v. After this period the grafting degree was evaluated in the samples. The grafted films were sulfonated using chlorosulfonic acid and 1, 2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The membranes were analyzed by infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermogravimetric measurements (TG) and degree of grafting (DOG). The ion exchange capacity (IEC) of membranes was determined by acid–base titration and the values for ETFE membranes were achieved higher than Nafion® films. Preliminary single cell performance was made using pure H2 and O2 as reactants at a cell temperature of 80 °C and atmospheric gas pressure. The fuel cell performance of ETFE films was satisfactory when compared to state-of-art Nafion® membranes.  相似文献   

10.
Gamma radiation has been used to covalently link polymer chains of [2-(Methacryloyloxy)ethyl]trimethylammonium chloride (MAETC) to cotton fabric by mutual radiation grafting. The grafted samples have been characterized for water uptake, surface morphology and thermal stability. Grafting extent was found to increase with the dose and monomer concentration. However high dose rate, O2, inorganic salts and alcohols suppressed grafting. Radiation polymerized poly(MAETC) and MAETC-g-cotton samples were tested for their antibacterial efficacy against various bacteria and were found to possess significant antibacterial activity.  相似文献   

11.
A study has been made for the preparation of membranes by the post radiation grafting of acrylamide (AAm) onto poly(tetrafluoroethylene) (PTFE), films. The appropriate reaction conditions were selected under which the graft polymerization was carried out successfully. In this grafting system ammonium ferrous sulphate (Mohr's salt) was used as inhibitor to minimize the homopolymerization of AAm and a suitable concentration of the inhibitor to be added to the reaction medium was found to be 0.05 wt%. The effect of monomer concentration, radiation intensity and temperature on the rate and final degree of grafting was investigated. Increasing grafting temperature rises the initial grafting rate, whereas the final grafting yield increases with temperature up to 45°C, and then declines. This behaviour was described by the influence of glass transition on the rate of termination in the semicrystalline polymer. The overall activation energy for this grafting system was found to be 14.6 and 44.5 kcal/mol above and below 35°C, respectively. Some selected properties of the graft copolymer were studied. It was found that the grafted membranes possess good mechanical and electrical properties and excellent chemical and thermal stability which makes them very promising in practical applications.  相似文献   

12.
We have determined the equilibrium properties (neutralization and swelling and the transport properties: conductivity and dialysis) of hydrophilic membranes obtained by radiation grafting of acrylic acid or 4-vinylpyridine onto thin PTFE films. The presence of strong counter-ion-membrane interaction (PTFE-PAA-K+ and PTFE-P4VP-ClO?4) has been confirmed in the beginning of neutralization. The grafting ratios of the samples ranged between a few percent and several hundreds percent. The properties have been studied in connection with the average degrees of ionization and the average molalities of the reactive groups throughout the whole thickness of the membrane. The parameters of the synthesis which determine the structure of acid or basic grafted chains also have an influence on the properties of the resulting membranes. For a high dose-rate (> 100 rad min?1), the properties of carboxylic membranes are related to the degree of cross-linking: for smaller dose rates, the properties are related to the length of the grafted branches and/or to the state of the skeleton of PTFE. For the basic membranes, the properties are controlled by the length of the grafted branches and the importance of the micro-phase-separation between PTFE and the grafted chains; for low dose rates, when the grafted branches are long, separation of hydrophobic and ionizable zones is noticed for grafting ratios higher than 5%. The carboxylic membranes with lower degrees of grafting, prepared with a high dose rate, exhibit very good permselectivity. The pyridinic membranes with a low degree of grafting could be of practical interest, viz. the manufacture of selective electrodes for perchlorate ions.  相似文献   

13.
Summary: A modified poly (vinylidene fluoride) (PVDF) hollow fiber membrane with higher flux and flux recovery rate was prepared by γ-radiation induced grafting of acrylic acid (AA). The influence of radiation dose and monomer concentration on the grafting degree was investigated. The results indicated that the grafting degree increased in the lower monomer volume fraction until the monomer volume fraction exceeded 20%. The grafting degree increased with the increase of radiation dose. Structural and morphological of the original and grafted membrane surface were characterized by FT-IR, scanning electron microscopy (SEM). The results indicated that acrylic acid was grafted onto PVDF hollow fiber membrane and the grafted membrane was more hydrophilic than original PVDF. There was a slight increase of breaking strength and yield stress with the increase of the grafting degree of AA. The pure water flux increased initially but decreased subsequently with the raise of grafting degree. When the grafting degree was 4.4%, the maximum pure water flux reached 1496.3 L/m2 × h, 1.79 times of original membrane. The pure water flux, flux recovery rate and rejection ratio for bovine serum albumin could improve simultaneously in a low grafting degree (<4.4%).  相似文献   

14.
Acrylic acid was grafted onto poly(ε-caprolactone) (PCL) films by using electron beam (EB) preirradiation technique. The effect of reaction time, monomer concentration, radiation dose, time between irradiation and grafting, radiation atmosphere, and polymer crystallinity on the extent of grafting were studied. Silver and tin ions were attached to the grafted chains in order to study the grafting process. The irradiation in air was initially more rapid, but the final extent of grafting was the same when irradiated in nitrogen atmosphere. Maximum grafting extents exceeding 400% could be obtained. The optimal grafting was obtained at an acrylic acid to water ratio of 30 : 70. The grafting process could be initiated at a dose as low as 12 kGy. The grafting process proved to start at the surface and was extended into the bulk with time. The ability to form crystals was reduced as the grafting extent increased. The water uptake of the poly(ε-caprolactone)-graft-poly(acrylic acid) was increasing with increasing grafting extent, but reached a maximum of ca 100% for all grafting extents above 85%. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1805–1812, 1998  相似文献   

15.
Preirradiation grafting of N-vinylpyrrolidone (NVP) onto poly(tetrafluoroethylene) (PTFE) and poly(tetrafluoroethylene-hexafluoropropylene) (FEP) films was investigated. The influence of grafting parameters such as preirradiation dose, monomer concentration, and grafting temperature on the rate and grafting yield was studied. Different solvents were used for diluting the monomer and it was found that the aqueous monomer solution at a concentration of 80 wt% was suitable for this grafting system. However, the graft polymerization of NVP in benzene terminated within a short time without significant grafting yield. The dependence of the grafting rate on preirradiation dose and monomer concentration was 1.2 and 1.07 order, respectively, for grafting onto PTFE films and 1.1 and 1.2 order, respectively, for grafting onto FEP films. Arrhenius plots for grafting onto PTFE films showed a breaking point at ca. 35°C and the overall activation energies were calculated as 23.6 and 9.0 Kcal/mol below and above 35°C, respectively. For grafting onto FEP films, however, no break was observed in the Arrhenius plots; the overall activation energy was 11.9 Kcal/mol. The swelling behavior and electric resistance of the grafted materials were investigated.  相似文献   

16.
A novel comb-type grafted hydrogel system of net-[PP-g-AAc]-g-4VP was synthesized by gamma radiation in three steps. In the first step a pH sensitive graft copolymer of AAc onto PP film was obtained by radiation grafting of acrylic acid (AAc) onto polypropylene (PP) films in aqueous solution at radiation doses of 10 kGy with a 60Co source. The grafted side chains of poly (acrylic acid) (PAAc) were then cross-linked with gamma radiation at different radiation doses to give net-[PP-g-AAc]. Finally, 4-vinylpyridine (4VP) was grafted into the net-[PP-g-AAc]. The comb-type grafted hydrogel obtained, net-[PP-g-AAc]-g-4VP, has been studied through determination of graft yield and swelling behavior at room temperature. Two critical pH values were found for net-[PP-g-AAc]-g-4VP at 4.5 and 7.2. Initial studies on the immobilization of Cu2+ ions from solution into net-[PP-g-AAc]-g-4VP films were performed.The comb-type grafted hydrogel, grafted onto PP was also characterized by differential scanning calorimetry (DSC), scanning electronic microscopy (SEM) and FTIR-ATR.  相似文献   

17.
Electron beam radiation induced grafting of acrylic acid (AA) and sodium styrene sulfonate (SSS) onto high-density polyethylene (HDPE) membranes was investigated by the pre-irradiation method, and a cation-exchange membrane containing bifunctional groups was synthesized. The effects of grafting conditions such as monomer concentration, radiation dose and temperature on grafting yield were studied. The dependence of grafting yield on pre-irradiation dose and monomer concentration was found to be 0.54 and 2.21, respectively. The activation energy for the grafting was calculated to be 22.2 kJ/mol. Infrared spectroscopy analysis of the grafted membrane confirmed the existence of sulfonate and carboxylic acid groups.  相似文献   

18.
Pre-irradiation grafting as a means to modify commerical poly(vinylidene fluoride) (PVDF) membranes has been studied. The membranes prepared were weak cation-exchange membranes (acrylic acid functionality), anion-exchange membranes (trimethyl ammonium functionality) and temperature-sensitive membranes (N-isopropyl amide functionality). Different graft loads were obtained by varying reaction time, radiation dose and in the case of acrylic acid the graft solution composition. The trimethyl ammonium chloride functionality was obtained by grafting vinyl benzyl chloride onto a PVDF membrane and aminating the benzyl chloride groups in a 45% trimethyl amine–water solution. For a membrane grafted with 9 wt% acrylic acid the flux increased approximately 70 times when the pH was decreased from 6 to 2. For a membrane with 5 wt% trimethyl ammonium functionality the flux increased both when pH was decreased below 3 and increased above 11. For a membrane grafted with 18 wt% N-isopropyl acrylamide a sharp increase of flux was observed when the temperature was raised above 32°C.  相似文献   

19.
Abstract

Poly(methy1 acrylate) was grafted onto chitin in an aqueous medium by using the ceric ion as a redox initiator in the presence of 10?4 M nitric acid and oxygen from the atmosphere. The grafting percentage turned out to be dependent on reaction temperature, time, and initiator concentration, but it was found to be independent of monomer concentration. In the course of the grafting reaction, homopolymerization of methyl acrylate occurs. The percentage of homopolymer was found to depend only on the reaction temperature. The apparent activation energy for the grafting reaction was estimated to be 11 kcal/mol. The grafted chitin is insoluble in solvents for chitin but shows enhanced swelling in some organic solvents.  相似文献   

20.
Here 4-vinylpyridine (4VP) was grafted onto polypropylene films (PP) by mutual irradiation method to give PP-g-4VP; N-isopropylacrylamide (NIPAAm) was then grafted onto the PP-g-4VP films to give (PP-g-4VP)-g-NIPAAm by pre-irradiation method, using a 60Co γ-source. The dependence of grafting percentage on radiation dose, temperature, reaction time, and monomer concentration was studied. (PP-g-4VP)-g-NIPAAm films were characterized by infrared spectroscopy (FTIR-ATR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The critical pH point and lower critical solution temperature (LCST) were determined by swelling and water contact angle measurements. The LCST also was determined by DSC. The binary graft copolymer films are shown to be thermo-pH sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号