首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
基于动态目标建模的粒子滤波视觉跟踪算法   总被引:3,自引:1,他引:3  
提出一种根据场景变化动态建立目标模型的粒子滤波视觉跟踪算法.该方法首先选择简单且具有互补性的特征描述当前图像,并统一采用直方图法对这些特征进行建模;然后在粒子滤波框架下,根据巴塔恰里亚测度评价各个目标特征和背景特征之间的可区分程度,动态调整特征间的置信度;并对各个特征似然函数的噪音参量进行在线估计和更新,使其似然函数的度量标准达到统一.分析和实验表明,该算法性能优于仅仅采用多特征融合进行粒子滤波视觉跟踪的方法,对摄像机运动、混淆干扰、遮挡及目标外观大小的改变具有更强的鲁棒性.  相似文献   

2.
针对红外目标在跟踪中计算复杂的问题,构建辅助粒子滤波算法。利用贝叶斯重要性采样算法,在权值大的粒子基础上引入辅助粒子变量,然后重新定义重要采样分布函数,防止重采样后粒子概率密度变化。两次加权计算,使粒子权值比仅用重采样的粒子权值变化更稳定,采样点最接近真实状态;同时不同权值粒子的概率阈值可作为粒子滤波是否完成的判断准则。在二维平面构造红外运动目标模型中,系统为零均值高斯白噪声。仿真数据表明:该算法在x,y方向的均方误差、画面处理时间、RM SE性能上优于粒子滤波算法和重采样粒子滤波算法。  相似文献   

3.
基于自适应粒子滤波的红外目标跟踪   总被引:1,自引:0,他引:1  
姚红革  雷松泽  齐华  郝重阳 《光子学报》2009,38(6):1507-1511
为有效解决非线性环境中的红外目标跟踪问题,提出一种自适应粒子滤波目标跟踪算法.建立了目标加权概率模型.在滤波过程中,提出双过程粒子重抽样方法,形成对抽样粒子集的自适应调节,有效地解决了粒子退化问题.用实际红外图像序列做了实验.结果表明,在非线性环境下用该方法得到的红外目标跟踪结果优于用传统粒子滤波和扩展卡尔曼滤波算法获得的结果.  相似文献   

4.
杨恒  钱钧  纪明  孙小炜  陆阳  宋金鸿 《应用光学》2012,33(4):703-710
提出一种基于动态特征融合的粒子滤波目标跟踪算法。选择具有互补性的灰度直方图和梯度直方图特征共同描述目标模型,然后在目标跟踪过程中,根据特征对目标和背景的区分程度动态地调整每个特征的置信度,对目标模型进行在线动态建模和更新,从而提高目标模型描述的准确度,并进一步提高粒子滤波算法的跟踪精度。实验结果表明:在对典型场景下的目标跟踪过程中,提出的算法比单独使用一种特征的粒子滤波算法具有更高的跟踪精度和更稳定可靠的跟踪性能。  相似文献   

5.
针对水下小目标粒子滤波估计过程中“粒子贫化”引起的估计性能下降,提出了混合粒子滤波算法。该算法在常规粒子滤波算法基础上,在每一步迭代估计过程中进行量测的再次随机采样,以丰富随机粒子多样性,缓解水下小目标状态估计过程中的“粒子贫化”的影响。对算法进行了仿真分析,并将该方法用于水下小目标探测实验的数据处理,结果表明,相比于常规的粒子滤波算法,所提出的混合粒子滤波得到了误差更小且稳定的状态估计结果,有效地改善水下小目标跟踪的精度和稳健性。  相似文献   

6.
孙伟  郭宝龙  朱娟娟  陈龙 《光子学报》2014,39(5):945-950
提出一种新的层次粒子滤波算法,选择局部区域特征点和颜色信息建立目标模型,引入粒子的二阶采样过程.算法通过粒子的一阶权重更新获得好的初始分布,二阶权重更新保证粒子的高置信度和高的采样效率,当粒子数目小于一定阈值时进行重要性重采样,利用仿射模型对目标区域精确定位及姿态修正.实验表明:改进算法将目标局部特征分布与目标颜色信息相结合,通过二阶采样过程,保证了局部特征跟踪的稳定性,解决了经典理论中误匹配导致的采样点发散问题,在目标部分遮挡情况下也可以完成实时目标跟踪.  相似文献   

7.
一种新的层次粒子滤波的目标跟踪方法   总被引:2,自引:0,他引:2  
提出一种新的层次粒子滤波算法,选择局部区域特征点和颜色信息建立目标模型,引入粒子的二阶采样过程.算法通过粒子的一阶权重更新获得好的初始分布,二阶权重更新保证粒子的高置信度和高的采样效率,当粒子数目小于一定阈值时进行重要性重采样,利用仿射模型对目标区域精确定位及姿态修正.实验表明:改进算法将目标局部特征分布与目标颜色信息相结合,通过二阶采样过程,保证了局部特征跟踪的稳定性,解决了经典理论中误匹配导致的采样点发散问题,在目标部分遮挡情况下也可以完成实时目标跟踪.  相似文献   

8.
针对复杂背景下视觉目标跟踪问题,提出了一种基于多特征融合和改进建议分布函数的粒子滤波目标跟踪算法。为了解决单一特征跟踪稳定性差的问题,该方法在构造粒子滤波算法观测似然函数的过程中,综合利用颜色、梯度和纹理特征,并给出一种有效的特征权值自适应分配策略。针对传统建议分布函数无法利用观测信息的缺陷,提出了一种基于PSO算法的建议分布函数,有效地抑制了粒子退化现象。实验采用复杂地面环境下的多组图像序列,结果表明该算法的有效性。  相似文献   

9.
针对目标跟踪过程中存在的光线变化及目标遮挡等复杂情况所导致的跟踪目标的丢失或跟踪错位等问题,采用特征融合的策略,将其用于粒子滤波框架中进行跟踪。利用特征融合加权直方图的方法来描述目标的颜色和纹理特征,并对变化的目标自适应地更新参考目标模型,能有效地处理视频中由于旋转、遮挡、光线变化带来的影响。实验证明,提出的算法在保证跟踪精确性的情况下,具有较好的适应性及鲁棒性。  相似文献   

10.
针对目标跟踪过程中存在的光线变化及目标遮挡等复杂情况所导致的跟踪目标的丢失或跟踪错位等问题,采用特征融合的策略,将其用于粒子滤波框架中进行跟踪。利用特征融合加权直方图的方法来描述目标的颜色和纹理特征,并对变化的目标自适应地更新参考目标模型,能有效地处理视频中由于旋转、遮挡、光线变化带来的影响。实验证明,提出的算法在保证跟踪精确性的情况下,具有较好的适应性及鲁棒性。  相似文献   

11.
多基地声呐探测系统主要通过测量回波的时延和方位信息进行目标定位与跟踪,定位精度受声速、时延和方位测量误差的影响较大,可以通过多普勒信息辅助进一步提高定位跟踪精度.现有的多普勒信息辅助定位跟踪算法多适用于单基地声呐系统,多基地中的多普勒测量值与目标状态的关系更为复杂,需要研究新的融合方法.该文提出了一种适用于多基地声呐系...  相似文献   

12.
尚海林 《光学技术》2013,39(1):52-55
基于直方图的粒子滤波已成功地用于解决计算机视觉中的目标跟踪问题,但是,在观测似然计算上的低效限制了它们的实时应用。针对该问题,提出了一种快速的粒子跟踪方法。其建立在积分直方图技术的基础上,使得每个候选样本的观测似然能够由少量的查找表运算有效地计算出来。该方法使用了大量的粒子以确保鲁棒性,同时确保具备实时跟踪的能力。实验结果表明该方法在计算效率上优于通常的粒子滤波跟踪方法。  相似文献   

13.
通过模仿人眼跟踪运动目标的特点,对粒子滤波框架进行改造,提出了一种基于人眼视觉系统特性的粒子滤波跟踪算法。该算法采用多特征融合,将颜色特征与运动面积特征相结合,对运动区域比较敏感;在状态更新阶段,对跟踪粒子进行进一步筛选,自适应地选择性能良好的粒子进行结果判决,保障了跟踪结果的准确性。实验表明,该方法不仅可行,而且具有良好的跟踪效果。  相似文献   

14.
In order to avoid the tracking failure based on single feature under the conditions of cluttered backgrounds illumination changes, a robust tracking algorithm was proposed based on adaptively multi-feature fusion and particle filter. Color histogram was used to describe the overall distribution characteristics of the target and histogram of oriented gradients containing some construction information and LBP is very effective to describe the image texture features. The Three features were fused in the frame of particle filter. Meanwhile, the weights of each feature were adjusted dynamically. The experimental results show that with adaptive fusion, the tracker becomes more robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion.  相似文献   

15.
To address two challenging problems in infrared target tracking, target appearance changes and unpre- dictable abrupt motions, a novel particle filtering based tracking algorithm is introduced. In this method, a novel saliency model is proposed to distinguish the salient target from background, and the eigenspace model is invoked to adapt target appearance changes. To account for the abrupt motions efficiently, a two- step sampling method is proposed to combine the two observation models. The proposed tracking method is demonstrated through two real infrared image sequences, which include the changes of luminance and size, and the drastic abrupt motions of the target.  相似文献   

16.
Tracking an active sound source involves the modeling of non-linear non-Gaussian systems. To address this problem, this paper proposed scaled unscented particle filter (SUPF) algorithm for tracking moving sound source. The particle filter part of the SUPF provides the general probabilistic framework to handle non-linear non-Gaussian systems, and the scaled unscented Kalman filter (SUKF) part of the SUPF generates better proposal distributions by taking into account the most recent observation. Meanwhile, models used in SUPF algorithm were also explored for the sound source motion, observation and the likelihood of the sound source location in the light of the Langevin process. Compared with the conventional PF approach, the simulated results demonstrated that the SUPF algorithm had superior tracking performance.  相似文献   

17.
Stereoscopic-tracking velocimetry can offer an excellent potential for continuously monitoring three-dimensional flow fields for all three-component velocities in near-real-time. Requiring only the deployment of two solid-state cameras with directional freedom in test-section illumination and observation, the system can be built to be compact and robust. For flow velocimetry measurement, increasing the number density in particle seeding is much desirable for maximizing spatial resolution, that is, number of velocity data points of the captured field. The challenge, however, is how to successfully track numerous crisscrossing particles with speed and reliability. In our approach, the task of particle tracking is converted to an optimization problem for which neural networks are applied. Here we present the design and development of the neural networks for particle tracking as well as the investigation results based on both computer simulations and real experiments. The approach appears to be appropriate for near-real-time velocity monitoring, being able to provide reliable solutions achieved by the massive parallel-processing power of the neural networks.  相似文献   

18.
为了避免粒子群算法退化和运算量大问题,提出利用修补粒子群算法对红外目标进行跟踪。该算法先用设置粒子的惯性因子对搜索到的红外目标位置进行修正,使粒子的位置达到局部最优点和全局最优点;然后通过粒子群收缩因子限制在边界搜索,消除目标位置的模糊性。利用该方法对空中红外战斗机图像跟踪仿真,结果显示在500次粒子迭代,100次跟踪中误差为2.83%,在最大惯性权值为1.2和最小惯性权值为0.3时跟踪效果最接近真实目标,且边缘最清晰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号