共查询到18条相似文献,搜索用时 93 毫秒
1.
基于动态目标建模的粒子滤波视觉跟踪算法 总被引:3,自引:1,他引:3
提出一种根据场景变化动态建立目标模型的粒子滤波视觉跟踪算法.该方法首先选择简单且具有互补性的特征描述当前图像,并统一采用直方图法对这些特征进行建模;然后在粒子滤波框架下,根据巴塔恰里亚测度评价各个目标特征和背景特征之间的可区分程度,动态调整特征间的置信度;并对各个特征似然函数的噪音参量进行在线估计和更新,使其似然函数的度量标准达到统一.分析和实验表明,该算法性能优于仅仅采用多特征融合进行粒子滤波视觉跟踪的方法,对摄像机运动、混淆干扰、遮挡及目标外观大小的改变具有更强的鲁棒性. 相似文献
2.
针对红外目标在跟踪中计算复杂的问题,构建辅助粒子滤波算法。利用贝叶斯重要性采样算法,在权值大的粒子基础上引入辅助粒子变量,然后重新定义重要采样分布函数,防止重采样后粒子概率密度变化。两次加权计算,使粒子权值比仅用重采样的粒子权值变化更稳定,采样点最接近真实状态;同时不同权值粒子的概率阈值可作为粒子滤波是否完成的判断准则。在二维平面构造红外运动目标模型中,系统为零均值高斯白噪声。仿真数据表明:该算法在x,y方向的均方误差、画面处理时间、RM SE性能上优于粒子滤波算法和重采样粒子滤波算法。 相似文献
3.
4.
5.
6.
7.
一种新的层次粒子滤波的目标跟踪方法 总被引:2,自引:0,他引:2
提出一种新的层次粒子滤波算法,选择局部区域特征点和颜色信息建立目标模型,引入粒子的二阶采样过程.算法通过粒子的一阶权重更新获得好的初始分布,二阶权重更新保证粒子的高置信度和高的采样效率,当粒子数目小于一定阈值时进行重要性重采样,利用仿射模型对目标区域精确定位及姿态修正.实验表明:改进算法将目标局部特征分布与目标颜色信息相结合,通过二阶采样过程,保证了局部特征跟踪的稳定性,解决了经典理论中误匹配导致的采样点发散问题,在目标部分遮挡情况下也可以完成实时目标跟踪. 相似文献
8.
李沫李晶赵鹏飞丛彦超王雪 《光学与光电技术》2017,(4):72-77
针对复杂背景下视觉目标跟踪问题,提出了一种基于多特征融合和改进建议分布函数的粒子滤波目标跟踪算法。为了解决单一特征跟踪稳定性差的问题,该方法在构造粒子滤波算法观测似然函数的过程中,综合利用颜色、梯度和纹理特征,并给出一种有效的特征权值自适应分配策略。针对传统建议分布函数无法利用观测信息的缺陷,提出了一种基于PSO算法的建议分布函数,有效地抑制了粒子退化现象。实验采用复杂地面环境下的多组图像序列,结果表明该算法的有效性。 相似文献
9.
10.
11.
12.
基于直方图的粒子滤波已成功地用于解决计算机视觉中的目标跟踪问题,但是,在观测似然计算上的低效限制了它们的实时应用。针对该问题,提出了一种快速的粒子跟踪方法。其建立在积分直方图技术的基础上,使得每个候选样本的观测似然能够由少量的查找表运算有效地计算出来。该方法使用了大量的粒子以确保鲁棒性,同时确保具备实时跟踪的能力。实验结果表明该方法在计算效率上优于通常的粒子滤波跟踪方法。 相似文献
13.
14.
In order to avoid the tracking failure based on single feature under the conditions of cluttered backgrounds illumination changes, a robust tracking algorithm was proposed based on adaptively multi-feature fusion and particle filter. Color histogram was used to describe the overall distribution characteristics of the target and histogram of oriented gradients containing some construction information and LBP is very effective to describe the image texture features. The Three features were fused in the frame of particle filter. Meanwhile, the weights of each feature were adjusted dynamically. The experimental results show that with adaptive fusion, the tracker becomes more robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion. 相似文献
15.
To address two challenging problems in infrared target tracking, target appearance changes and unpre- dictable abrupt motions, a novel particle filtering based tracking algorithm is introduced. In this method, a novel saliency model is proposed to distinguish the salient target from background, and the eigenspace model is invoked to adapt target appearance changes. To account for the abrupt motions efficiently, a two- step sampling method is proposed to combine the two observation models. The proposed tracking method is demonstrated through two real infrared image sequences, which include the changes of luminance and size, and the drastic abrupt motions of the target. 相似文献
16.
Tracking an active sound source involves the modeling of non-linear non-Gaussian systems. To address this problem, this paper proposed scaled unscented particle filter (SUPF) algorithm for tracking moving sound source. The particle filter part of the SUPF provides the general probabilistic framework to handle non-linear non-Gaussian systems, and the scaled unscented Kalman filter (SUKF) part of the SUPF generates better proposal distributions by taking into account the most recent observation. Meanwhile, models used in SUPF algorithm were also explored for the sound source motion, observation and the likelihood of the sound source location in the light of the Langevin process. Compared with the conventional PF approach, the simulated results demonstrated that the SUPF algorithm had superior tracking performance. 相似文献
17.
Study of particle tracking algorithms based on neural networks for stereoscopic tracking velocimetry 总被引:1,自引:0,他引:1
Stereoscopic-tracking velocimetry can offer an excellent potential for continuously monitoring three-dimensional flow fields for all three-component velocities in near-real-time. Requiring only the deployment of two solid-state cameras with directional freedom in test-section illumination and observation, the system can be built to be compact and robust. For flow velocimetry measurement, increasing the number density in particle seeding is much desirable for maximizing spatial resolution, that is, number of velocity data points of the captured field. The challenge, however, is how to successfully track numerous crisscrossing particles with speed and reliability. In our approach, the task of particle tracking is converted to an optimization problem for which neural networks are applied. Here we present the design and development of the neural networks for particle tracking as well as the investigation results based on both computer simulations and real experiments. The approach appears to be appropriate for near-real-time velocity monitoring, being able to provide reliable solutions achieved by the massive parallel-processing power of the neural networks. 相似文献
18.
为了避免粒子群算法退化和运算量大问题,提出利用修补粒子群算法对红外目标进行跟踪。该算法先用设置粒子的惯性因子对搜索到的红外目标位置进行修正,使粒子的位置达到局部最优点和全局最优点;然后通过粒子群收缩因子限制在边界搜索,消除目标位置的模糊性。利用该方法对空中红外战斗机图像跟踪仿真,结果显示在500次粒子迭代,100次跟踪中误差为2.83%,在最大惯性权值为1.2和最小惯性权值为0.3时跟踪效果最接近真实目标,且边缘最清晰。 相似文献