首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic radiation force has been demonstrated as a method for manipulating micron-scale particles, but is frequently affected by unwanted streaming. In this paper the streaming in a multi-transducer quasi-standing wave acoustic particle manipulation device is assessed, and found to be dominated by a form of Eckart streaming. The experimentally observed streaming takes the form of two main vortices that have their highest velocity in the region where the standing wave is established. A finite element model is developed that agrees well with experimental results, and shows that the Reynolds stresses that give rise to the fluid motion are strongest in the high velocity region. A technical solution to reduce the streaming is explored that entails the introduction of a biocompatible agar gel layer at the bottom of the chamber so as to reduce the fluid depth and volume. By this means, we reduce the region of fluid that experiences the Reynolds stresses; the viscous drag per unit volume of fluid is also increased. Particle Image Velocimetry data is used to observe the streaming as a function of agar-modified cavity depth. It was found that, in an optimised structure, Eckart streaming could be reduced to negligible levels so that we could make a sonotweezers device with a large working area of up to 13 mm × 13 mm.  相似文献   

2.
An analytic solution is derived for acoustic streaming generated by a standing wave in a viscous fluid that occupies a two-dimensional channel of arbitrary width. The main restriction is that the boundary layer thickness is a small fraction of the acoustic wavelength. Both the outer, Rayleigh streaming vortices and the inner, boundary layer vortices are accurately described. For wide channels and outside the boundary layer, the solution is in agreement with results obtained by others for Rayleigh streaming. As channel width is reduced, the inner vortices increase in size relative to the Rayleigh vortices. For channel widths less than about 10 times the boundary layer thickness, the Rayleigh vortices disappear and only the inner vortices exist. The obtained solution is compared with those derived by Rayleigh, Westervelt, Nyborg, and Zarembo.  相似文献   

3.
Changliang X  Mengli W 《Ultrasonics》2005,43(7):596-601
The stability of the rotor of ultrasonic motor driving fluid directly is a key to its applications and control. This paper introduced the acoustic streaming and acoustic viscous stress near the boundary layer. Following this, the effect of acoustic viscous force on the stability of the rotor of ultrasonic motor driving fluid directly was presented in detail. The result showed that this system can be equivalent to a mass-spring and the spring constant can be used to weigh the stability of the rotor. By this model and relevant experiments, factors that affect the stability of the rotor such as the driving frequency, the rotor's weight and radius, the saturated acoustic streaming velocity, the mode number of stator vibration, the fluid's height and type are investigated and useful guidelines for design and application are obtained.  相似文献   

4.
声波作用下球形颗粒外声流分布的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
综合考虑声学边界层内的热损失和黏性损失,建立处于平面驻波声压波节位置二维球形颗粒外声流计算模型,利用分离时间尺度的数值方法对颗粒外声流流场特征进行模拟.将模拟结果与相应的解析解和实验结果对比,验证了数值模拟的可靠性.在此基础上,研究了雷诺数Re和斯特劳哈尔数Sr对球形颗粒声学边界层内二阶声流流场结构、涡流强度及范围的影...  相似文献   

5.
范瑜晛  刘克  杨军 《声学学报》2012,37(3):252-262
建立了二维渐变截面热声波导管内的声流模型,分别考虑了封闭直管和环形回路两种不同结构,获得了更为普适的解析结果。封闭直管结构的声流结果可应用于任意宽度的波导管,环路结构的结果考虑了渐变截面管段宽度远大于热、黏穿透深度的情形。研究结果表明,渐变截面热声波导管内的声流主要受声场结构、截面变化及轴向时均温度分布的影响,在其它参量不变时声流量值及分布随波导管特征尺度的不同而变化。该解析模型可应用于热声及其它物理背景下的声流分析。   相似文献   

6.
Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart’s velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the “sonochemical focal”, accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.  相似文献   

7.
The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.  相似文献   

8.
An analytic model of acoustic streaming generated in two-dimensional thermoa-coustic waveguides with slowly varying cross-section was developed for more general applications. The analytical solutions of acoustic streaming characteristics in the closed straight tube and the annular tube are given based on the model.The solution for the closed straight tube can be applied to the case with any transverse scale.The solution for the annular tube is obtained under the assumption that the width of the varying cross-section part is much larger than the viscous and thermal penetration depths.The effects of cross-section variation,time-averaged temperature distribution and components of sound field are reflected in the analytic solutions. The magnitude and distribution of acoustic streaming velocity vary with the characteristic scale of the waveguides.The analytic model of acoustic streaming can be applied in research under thermoacoustic and other physical backgrounds.  相似文献   

9.
It is well known that ultrasonic cavitation causes a steady flow termed acoustic streaming. In the present study, the velocity of acoustic streaming in water and molten aluminum is measured. The method is based on the measurement of oscillation frequency of Karman vortices around a cylinder immersed into liquid. For the case of acoustic streaming in molten metal, such measurements were performed for the first time. Four types of experiments were conducted in the present study: (1) Particle Image Velocimetry (PIV) measurement in a water bath to measure the acoustic streaming velocity visually, (2) frequency measurement of Karman vortices generated around a cylinder in water, and (3) in aluminum melt, and (4) cavitation intensity measurements in molten aluminum. Based on the measurement results (1) and (2), the Strouhal number for acoustic streaming was determined. Then, using the same Strouhal number and measuring oscillation frequency of Karman vortices in aluminum melt, the acoustic streaming velocity was measured. The velocity of acoustic streaming was found to be independent of amplitude of sonotrode tip oscillation both in water and aluminum melt. This can be explained by the effect of acoustic shielding and liquid density.  相似文献   

10.
We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.  相似文献   

11.
运动目标声信号的时频特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
提高声被动目标定位精度需要研究运动目标在有风条件下目标声信号的特征。本文从声学波动方程出发,对无风和有常速风情况下的波动方程进行了求解,得到了运动目标声信号的延迟关系;分析了解的主要影响项,并得到了其解析信号;用解析信号对运动目标声信号的延迟特性和时频特征进行了仿真计算。  相似文献   

12.
13.
Propagation of power ultrasound (from 20 to 800 kHz) through a liquid inside a cylindrical reactor initiates acoustic cavitation and also fluid dynamics phenomena such as free surface deformation, convection, acoustic streaming, etc. Mathematical modelling is performed as a new approach to predict where active bubbles are and how intense cavitation is. A calculation based on fluid dynamics equations is undertaken using computational fluid dynamics code; this is of great interest because such code provides not only the pressure field but also velocity and temperature fields. The link between the acoustic pressure and the cavitation field is clearly established. Moreover, the pressure profile near a free surface allows one to predict the shape of the acoustic fountain. The influence of the acoustic fountain on the wave propagation is shown to be important. The convective flow inside a reactor is numerically obtained and agrees well with particle image velocity measurements. Non-linearities arising from the dissipation of the acoustic wave are computed and lead to the calculation of the acoustic streaming. The superimposed velocity field (convective flow and acoustic streaming) succeeds in simulating the bubble behaviour at 500 kHz, for instance.  相似文献   

14.
Droplet combustion in standing sound waves   总被引:1,自引:0,他引:1  
Interaction between droplet combustion and acoustic oscillation is clarified. As the simplest model, an isolated fuel droplet is combusted in a standing sound wave. Apart from the conventional idea that oscillatory component of flow influences heat and mass transfer and promotes combustion, a new model that a secondary flow dominates combustion promotion is examined. The secondary flow, found by the authors in the previous work, is driven by acoustic radiation force due to Reynolds normal stress, and named as thermo-acoustic streaming. Since the force is described by the same equation as buoyancy, i.e., F = ΔρVg, the nature of the streaming is thought to be the same as natural convection. The flow patterns of the streaming are analyzed and its influence on burning rate of a droplet is predicted. Experimental investigation was mainly done with burning droplets located in the middle of node and anti-node of standing sound waves. This location realizes the strongest streaming. By varying sound pressure level, ambient pressure, and acoustic frequency, the strength of the streaming was controlled. Flame configuration including soot and burning rate were examined. Microgravity conditions were employed to clarify the influence of acoustic field through the streaming, since it is similar to and must be distinguished from natural convection. Experiments using microgravity conditions confirmed the new combustion promotion model and the way to quantify it. By introducing a new non-dimensional number Gra, that is the ratio of acoustic radiation force to viscosity, burning rate constants for various ambient and sound conditions are rearranged. As a result, it was found that the excess burning rate (k/k0 − 1) is proportional to or , for weak sound and for strong sound, respectively.  相似文献   

15.
The focus of this work is to extend the theory of boundary layer induced acoustic streaming to include cylindrical geometries and to highlight the effects of boundary layer induced streaming on flow velocities in micro-scale channels. The work presented here includes the development of a model for streaming in a cylindrical channel by a method of successive approximations. The validity of this model is established by comparison with a well-established model for streaming between parallel plates of infinite extent. This is followed by a discussion on the importance of employing a cylindrical solution including boundary layer induced streaming for the analysis of streaming in micro-scale channels.  相似文献   

16.
This study considers the acoustic streaming in water produced by a lithotripsy pulse. Particle image velocimetry (PIV) method was employed to visualize the acoustic streaming produced by an electromagnetic shock wave generator using video images of the light scattering particles suspended in water. Visualized streaming features including several local peaks and vortexes around or at the beam focus were easily seen with naked eyes over all settings of the lithotripter from 10 to 18 kV. Magnitudes of the peak streaming velocity measured vary in the range of 10-40 mm s(-1) with charging voltage settings. Since the streaming velocity was estimated on the basis of a series of the video images of particles averaged over 1/60s, the time resolution limited by the video frame rate which is 1-2 orders of magnitude larger than driving acoustic activities, measured velocities are expected to be underestimated and were shown a similar order of magnitude lower than those calculated from a simple theoretical consideration. Despite such an underestimation, it was shown that, as predicted by theory, the magnitude of the streaming velocity measured by the present PIV method was proportional to acoustic intensity. In particular it has almost a linear correlation with peak negative pressures (r=0.98683, p=0.0018).  相似文献   

17.
When using laser interferometer to detect surface acoustic wave at fluid–solid interface, there are two factors which will cause the optical path length variation of the probe laser beam: interface deformation, and refractive index changes in fluid induced by acoustic leakage. Influence of acoustic leakage on laser interferometric detection for surface acoustic wave is researched here. A metal plate immersed in an infinite fluid is used as a physical model. Interface deformation due to laser-induced acoustic wave and pressure in fluid due to acoustic leakage are computed for select cases by finite element method. The optical path length variation caused by the two factors are calculated respectively and compared. The results show that the influence of acoustic leakage increases with the increasing acoustic impedance matching of fluid and solid, the peak-to-peak of influence degree increases linearly with the increasing acoustic impedance of fluid, and that decreasing the distance between the interferometer and interface can effectively reduce the influence of acoustic leakage.  相似文献   

18.
Acoustic streaming (AS) is the steady time-averaged flow generated by acoustic field, which has been widely used in enhancing mixing and particle manipulation. Current researches on acoustic streaming mainly focus on Newtonian fluids, while many biological and chemical solutions exhibit non-Newtonian properties. The acoustic streaming in viscoelastic fluids has been studied experimentally for the first time in this paper. We found that the addition of polyethylene oxide (PEO) polymer to the Newtonian fluid significantly altered the flow characteristics in the microchannel. The resulting acousto-elastic flow showed two modes: positive mode and negative mode. Specifically, the viscoelastic fluids under acousto-elastic flow exhibit mixing hysteresis features at low flow rates, and degeneration of flow pattern at high flow rates. Through quantitative analysis, the degeneration of flow pattern is further summarized as time fluctuation and spatial disturbance range reduction. The positive mode in acousto-elastic flow can be used for the mixing enhancement of viscoelastic fluids in the micromixer, while the negative mode provides a potential method for particle/cell manipulation in viscoelastic body fluids such as saliva by suppressing unstable flow.  相似文献   

19.
声流现象的研究及其应用   总被引:5,自引:0,他引:5       下载免费PDF全文
钱盛友  王鸿樟  孙福成 《应用声学》1997,16(6):38-42,25
本文从声流产生的机理出发,综合了影响声流的诸因素,介绍了声流现象的检测方法及声流效应的应用。  相似文献   

20.
This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24 kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号