首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Spherical and swellable gel beads were obtained by the suspension polymerization of poly(ethylene glycol) methacrylate macromonomer (PEG-MA). The average size and size distribution properties, the equilibrium swelling behaviour and the protein adsorption characteristics of PEG-MA-based gel beads were determined. In the suspension polymerization system, the organic phase including monomer, cross-linker and diluent solution was dispersed in an aqueous medium by using poly(vinylpyrrolidone) as the stabilizer. The diluent solution was prepared by mixing cyclohexanol and octanol at different volume ratios. The suspension polymerization experiments were designed in two separate parts. In the first part, ethylene glycol dimethacrylate was selected as the cross-linker and swellable PEG-MA-based gel beads were obtained by changing the cross-linker concentration, the monomer/diluent ratio and the stirring rate. In the second part, a more hydrophobic structure, divinylbenzene (DVB) was tried as a cross-linker. In this part, PEG-MA-DVB copolymer beads were obtained by changing the DVB/PEG-MA feed ratio. Then, the hydrophicility of the resulting gel beads could be controlled by changing the feed ratio of hydrophilic macromonomer to hydrophobic cross-linker. This property was also used to control the extent of nonspecific protein adsorption onto the surface of the gel beads. The non specific albumin adsorption onto the gel beads decreased with increasing PEG-MA content. No significant nonspecific adsorption at the isoelectric point of albumin was detected onto the gel beads produced with the higher PEG-MA/DVB feed ratios. For specific albumin adsorption, a triazinyl dye (i.e., cibacron blue, CB F3G-A) was covalently attached onto the surface of the copolymer beads via terminal hydroxyl groups of PEG-MA. The results of albumin adsorption experiments with the CB F3G-A carrying beads indicated that an appreciable specific albumin adsorption capacity could be obtained with the gel beads produced with a PEG-MA/DVB feed ratio of 1.5/4.0. Received: 16 August 1999/Revised: 27 December 1999  相似文献   

2.
We develop a new process for the preparation of synergistic antifouling functional coatings on gold surfaces via a “grafting to” approach. The strategy includes a synthetic step of polymer brushes that consist of poly (ethylene glycol) (PEG) and zwitterionic side chains via a typical reversible-addition fragmentation chain transfer (RAFT) polymerization process, and a subsequent deposition of the polymer brushes onto a gold substrate. The presence of PEG and zwitterion chains on these polymer brush-coated gold surfaces has been proved to have a synergistic effect on the final antifouling property of the coating. PEG chains lower the electrostatic repulsion between zwitterionic polymer chains and increase their graft density on gold surfaces, while zwitterionic polymer effectively improves the antifouling property that is offered by PEG chains alone. Protein adsorption and cell attachment assays tests are conducted to confirm that this copolymer layer on gold surface has a pronounced resistance against proteins such as Bovine serum albumin and Lysozyme. Importantly, the antifouling property can be systematically adjusted by varying the molar ratio of PEG to zwitterionic chains in the final coating copolymer.  相似文献   

3.
Ferrocene was covalently bonded to a layer of adsorbed single‐walled carbon nanotubes on a glassy carbon electrode surface using electrochemical grafting and click chemistry. Grafting of the 4‐azidobenzenediazonium salt onto the surface was accomplished by electrochemical reduction. The surface‐bound azide groups, with the use of a copper(I) catalyst, were reacted with ethynylferrocene to form covalent 1,2,3‐triazole bonds by click chemistry. This layer by layer construction of the electrode surface results in stable electrodes by combining good electrical conductivity and increased surface area of the nanotubes with the versatility of the Sharpless click reaction.  相似文献   

4.
In this study, a new affinity high-performance liquid chromatography (HPLC) stationary phase suitable for protein separation was synthesized. In the first stage of the synthesis, uniform porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate), poly(HEMA-co-EDM), beads 6.2 μm in size were obtained. Homogeneous distribution of hydroxyl groups in the bead interior was confirmed by confocal laser scanning microscopy. The plain poly(HEMA-co-EDM) particles gave very low non-specific protein adsorption with albumin. The selected dye ligand Cibacron blue F3G-A (CB F3G-A) was covalently linked onto the beads via hydroxyl groups. In the batch experiments, albumin adsorption up to 60 mg BSA/g particles was obtained with the CB F3G-A carrying poly(HEMA-co-EDM) beads. The affinity-HPLC of selected proteins (albumin and lysozyme) was investigated in a 25 mm×4.0-mm inner diameter column packed with CB F3G-A carrying beads and both proteins were successfully resolved. By a single injection, 200 μg of protein was loaded and quantitatively eluted from the column. The protein recovery increased with increasing flow rate and salt concentration of the elution buffer and decreased with the increasing protein feed concentration. During the albumin elution, theoretical plate numbers up to 30,000 plates/m were achieved by increasing the salt concentration.  相似文献   

5.
Two surface chemistry approaches were realized to complete click reactions at covalently grafted polymer brushes of poly(poly(ethylene glycol) monomethacrylate) on a planar silicon surface (Si-g-P(PEGMAOH)). On one hand, the hydroxyls from Si-g-P(PEGMA-OH) brushes can be replaced by chlorines of thionyl chloride and then chlorines can be substituted with azides of sodium azide to achieve azide-terminated (Si-g-P(PEGMA-N(3))) brushes. On the other hand, the terminal acetylene (Si-g-P(PEGMA-CH(2)C[triple bond]CH)) brushes can be prepared easily by reaction between Si-g-P(PEGMA-OH) and propargyl bromide. Model compounds of acetylene-terminated propargylamine, propiolic acid, and 10-undecynoic acid as well as azide-terminal benzyl azide were chosen to investigate the surface click reactions catalyzed with Cu(II)/sodium L-ascorbate by microwave irradiation under very mild conditions at 30°C for 1h. The stepwise modifications were characterized by two surface-sensitive techniques, Multiple Transmission-Reflection Infrared Spectroscopy (MTR-IR) and X-ray Photoelectron Spectroscopy (XPS), and their spectra were analyzed in detail. The triazole ring v(H-C=) stretching at 3139 cm(-1) and the XPS high-resolution scan of N 1s directly confirm the click reactions. By quantifying their infrared spectra before and after click reactions, we conclude that the click reactions on silicon surfaces by microwave irradiation possess high yield and efficiency. Hence, the microwave irradiated click reaction approaches might open convenient avenues to fabricate functional and hybrid organic/silicon devices.  相似文献   

6.
Magnetic nanoparticle assembly on surfaces using click chemistry   总被引:1,自引:0,他引:1  
Controlled assembly of ferromagnetic nanoparticles on surfaces is of crucial importance for a range of spintronic and data storage applications. Here, we present a novel method for assembling monolayers of ferromagnetic FePt nanoparticles on silicon oxide substrates using "click chemistry". Reaction of alkyne-functionalized FePt nanoparticles with azide-terminated self-assembled monolayers (SAMs), on silicon oxide, leads to the irreversible attachment of magnetic nanoparticles to the surface via triazole linkers. Based on this covalent interaction, well-packed monolayers of FePt nanoparticles were prepared and nanoparticle patterns are generated on surfaces via microcontact printing (μCP).  相似文献   

7.
A seeded polymerization method based on a new functional monomer, 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl), was proposed for the synthesis of a new type of monodisperse porous, hydrophilic microspheres with reactive character. By applying the method, poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate) (poly(HPMA-Cl-co-EDMA)) microspheres in the range of 4–7 μm, with specific surface areas between 2 and 146 m2/g, were obtained. The microspheres are hydrophilic in nature due to the hydroxyl groups and are easily derivatizable due to the reactive chloropropyl moiety. Ligands in the form of small molecules carrying hydrophobic alkyl or hydrophilic ion exchanger groups were covalently attached onto the microspheres via simple and one-pot reactions via their chloropropyl functionality. Using the same functionality, click chemistry and surface-initiated atom transfer radical polymerization were also applied for the generation of triazole ring and zwitterionic molecular brushes on the microspheres, respectively. Poly(HPMA-Cl-co-EDMA) microspheres seem to be a promising hydrophilic reactive material particularly for the synthesis of ion exchanger resins and chromatographic stationary phases.  相似文献   

8.
Affinity dye-ligand Cibacron Blue F3GA(CB F3GA) was covalently coupled with poly(vinyl alcohol)(PVA) coated on the inner surface of microporous poly(tetra-fluoroethylene)(MPTFE) membranous capillary. The PVA-coated PTFE capillary surface was characterized by XPS and FESEM. The grafting degree of PVA and the amount of CB F3GA immobilized onto the membranous capillary were 23.5 mg/g and 89.6 pmol/g, respectively. These dyed membranous capillaries were chemically and mechanically stable, and could be reproducibly prepared. Human serum albumin(HSA) was selected as model protein. The saturation adsorbance of the dye attached membranous capillary was 85.3 mg HSA/g, while the capacity of non-specific adsorption for HSA was less than 0.3 mg/g.  相似文献   

9.
Plain poly(vinyl alcohol) (PVA) surfaces, PVA surfaces tailored with additives (chitosan, chitosan-oligo) and PVA surfaces crosslinked with homo- or hetero-bifunctional amino-linkers (ethylenediamine, hexamethylenediamine, adipic acid dihydrazide, 3-aminophenylboronic acid) were evaluated for their ability to immobilize IgG. Immobilization strategies tested were adsorption as well as covalent, statistically oriented and covalent, site-specific binding of antibodies. The PVA surfaces were optimized with respect to the type of PVA, to PVA concentration and to glass substrate type. The resulting hydrogel surface of choice consists of 4% PVA coated onto adhesive glass. Comparison of modified and unmodified PVA surfaces revealed six surfaces which showed significantly higher loading capacity than plain PVA:PVA surfaces tailored with 2% chitosan resulted in twice greater fluorescence, whereas PVA surfaces oxidized using HIO4 with and without further crosslinking using adipic acid dihydrazide revealed 2.6-2.8 times greater fluorescence. Yet the greatest fluorescence compared with plain PVA (up to 3.5 times as much) was achieved on PVA surfaces coupled with 3-aminophenylboronic acid activated by means of either 1% or 2.5% glutaraldehyde. Meanwhile, fluorescence signals were similar for statistically oriented IgG and IgG bound site-specifically using IgG activated with sodium meta-periodate.  相似文献   

10.
The site‐specific attachment of nanoparticles is of interest for biomaterials or biosensor applications. Polymer brushes can be used to regulate this adsorption, so the conditions for selective adsorption of phosphonate‐functionalized nanoparticles onto micropatterned polymer brushes with different functional groups are optimized. By choosing the strong polyelectrolytes poly(3‐sulfopropyl methacrylate), poly(sulfobetaine methacrylate), and poly[2‐(methacryloyloxy)ethyl trimethylammonium chloride], it is possible to direct the adsorption of nanoparticles to specific regions of the patterned substrates. A pH‐dependent adsorption can be achieved by using the polycarboxylate brush poly(methacrylic acid) (PMAA) as substrate coating. On PMAA brushes, the nanoparticles switch from attachment to the brush regions to attachment to the grooves of a patterned substrate on changing the pH from 3 to 7. In this manner, patterned substrates are realized that assemble nanoparticles in pattern grooves, in polymer brush areas, or substrates that resist the deposition of the nanoparticles. The nanoparticle deposition can be directed in a pH‐dependent manner on a weak polyelectrolyte, or is solely charge‐dependent on strong polyelectrolytes. These results are correlated with surface potential measurements and show that an optical trap is a versatile method to directly probe interactions between nanoparticles and polymer brushes. A model for these interactions is proposed based on the optical trap measurements.  相似文献   

11.
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m2/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins.  相似文献   

12.
The surface chemistry of colloidal silica has tremendous effects on its properties and applications. Commonly the design of silica particles is based on their de novo synthesis followed by surface functionalization leading to tailormade properties for a specific purpose. Here, the design of robust “precursor” polymer-decorated silica nano- and microparticles is demonstrated, which allows for easy post-modification by polymer embedded thiolactone chemistry. To obtain this organic-inorganic hybrid material, silica particles (SiO2P) were functionalized via surface-initiated atom transfer radical polymerization (SI-ATRP) with poly(2-hydroxyethyl acrylate) (PHEA)-poly(thiolactone acrylamide (PThlAm) co-polymer brushes. Exploiting the versatility of thiolactone post-modification, a system was developed that could be used in three exemplary applications: 1) the straightforward molecular post-functionalization to tune the surface polarity, and therefore the dispersibility in various solvents; 2) the immobilization of metal nanoparticles into the polymer brushes via the in situ formation of free thiols that preserved catalytic activity in a model reaction; 3) the formation of redox-responsive, permeable polymer capsules by crosslinking the thiolactone moieties with cystamine dihydrochloride (CDH) followed by dissolution of the silica core.  相似文献   

13.
There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.  相似文献   

14.
Spherical molecular brushes with amphiphilic heteroarms were facilely synthesized by grafting the arms of hydrophobic 2-azidoethyle palmitate and hydrophilic monoazide-terminated poly(ethylene glycol) onto the core of alkyne-modified hyperbranched polyglycerol (HPG) with high molecular weight (M n = 122 kDa) via one-pot parallel click chemistry. The parallel click grafting strategy was demonstrated to be highly efficient (~100%), very fast (~ 2 h) and well controllable to the amphilicity of molecular brushes. Through adjusting the feeding ratio of hydrophobic and hydrophilic arms, a series of brushes with different arm ratios were readily obtained. The resulting miktoarms hyperbranched polymer brushes (HPG-g-C16/PEG350) were characterized by hydrogen-nuclear magnetic resonance (1H NMR), Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) measurements. The spherical molecular brushes showed high molecular weights up to 230 kDa, and thus could be visualized by atomic force microscopy (AFM). AFM and dynamic laser light scattering (DLS) were employed to investigate the self-assembly properties of amphiphilic molecular brushes with closed proportion of hydrophobic and hydrophilic arms. The brushes could self-assemble hierarchically into spherical micelles, and network-like fibre structures, and again spherical micelles by addition of n-hexane into the dichloromethane or chloroform solution of brushes. In addition, this kind of miktoarms polymer brush also showed the ability of dye loading via host-guest encapsulation, which promises the potential application of spherical molecular brushes in supramolecular chemistry.  相似文献   

15.
Two types of macroporous organic polymer monoliths based on glycidyl methacrylate (GMA), 4-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) were prepared inside stainless-steel tubes. Azide functionalities were firstly introduced on the surfaces of poly(GMA-co-DVB) and poly(VBC-co-DVB) monoliths to provide reactive sites for click chemistry. With the application of copper(I)-catalyzed (3 + 2) azide-alkyne cycloaddition, an in-column click-modification approach for covalent attachment of long alkyl chains onto polymer monoliths was developed. The column morphology and surface chemistry of the fabricated monolithic columns were characterized by the scanning electron microscopy, mercury intrusion porosimeter, Fourier transform infrared spectroscopy, and elemental analyses, respectively. The chromatographic performances of the “clicked” stationary phases were demonstrated with the high separation efficiency for a variety of proteins within 4 min.  相似文献   

16.
Structural investigations of bare and surface-modified polystyrene microspheres (beads) have been carried out by infrared-visible sum frequency generation (SFG) vibrational spectroscopy and scanning force microscopy (SFM). Bead surfaces have been modified by either the covalent linking of immunoglobulin G (IgG) and bovine serum albumin (BSA) or the nonspecific adsorption of a Pluronic surfactant. After surface modification with protein, SFG signals in the aliphatic CH-stretch region are detected at both the buffer/bead and air/bead interfaces, indicating that some amino acid residues in proteins adopt preferred orientations. SFG results indicate that the hydrophobic poly(propylene glycol) moieties in the Pluronic order when adsorbed onto the bead, at both the buffer/bead and air/bead interfaces, whereas hydrophilic poly(ethylene glycol) groups align to a lesser extent. SFG spectra also show that the phenyl rings of bare polystyrene beads in contact with air or buffer are ordered, with a dipole component directed along the surface normal, but become less ordered after the adsorption of either proteins or the polymer. Molecular orientation and ordering at the bead surface affect its hydrophobicity and aggregation behavior. SFM results reveal the formation of nonuniform islands when bare beads with more hydrophobic character are spun-cast onto a silica substrate. In the presence of adsorbed protein, a hexagonal packing of beads, with some defects, is observed, depending on the bulk pH and the type of attached protein. Adsorbed Pluronic causes the beads to aggregate in a disordered fashion, as compared to the behavior of bare and protein-modified beads.  相似文献   

17.
Surfaces grafted with poly(methyl methacrylate) (PMMA) and streptavidin were synthesized through click chemistry to investigate the role of surface stiffness on protein adsorption as the hydrophilic and hydrophobic surface coverage of the substituents vary. Surface topographies coupled with the nanoindentation results indicated that, with the appropriate selections of polymer coverage and chain length, the extent of non-specific protein adhesion could be controlled by the hydrophobic interactions between PMMA, biotin, and streptavidin. It was shown that, when the molecular weight and stiffness of PMMA was close to that of streptavidin, patchy PMMA morphologies were obtained, which help inhibit the non-specific adsorption of streptavidin.  相似文献   

18.
Recentlyhighperformanceliquidaffinitychr0mat0graphy(HPLAC)hasdevel0pedveryquickly.HPLACcombinesthespeedandres0lvingp0werofHPLCwithbiol0gicalspecificityofaffinitychromatographyandhasbeenwidelyusedasananalyticalt00linbiochemicalresearch.CibacronBIueF3GAisthem0stwideIyusedreactivetriazine-baseddyewhichhasspecificinteracti0nwithpyridinenucleotide-dependentdehydr0genase,kinase,blo0dproteinsandotherpr0teinsandenzymes'.ltisasuitabIeHPLACligandbecauseofitsreactivityandchemicaIstability.Inthi…  相似文献   

19.
A new “grafting to” strategy was proposed for the preparation of polymer based ion exchange supports carrying polymeric ligands in the form of weak or strong ion exchangers. Monodisperse porous poly(glycidyl methacrylate-co-ethylene dimethacrylate), poly(GMA-co-EDM) particles 5.9 μm in size were synthesized by “modified seeded polymerization”. Poly(2,3-dihydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(DHPM-co-EDM) particles were then obtained by the acidic hydrolysis of poly(GMA-co-EDM) particles. The hydroxyl functionalized beads were treated with 3-(trimethoxysilyl)propyl methacrylate to have covalently linked methacrylate groups on the particle surface. The selected monomers carrying weak or strong ionizable groups (2-acrylamido-2-methyl-1-propane sulfonic acid, AMPS; 2-dimethylaminoethylmethacrylate, DMAEM and N-[3-(dimethylamino)propyl] methacrylamide, DMAPM) were subsequently grafted onto the particles via immobilized methacrylate groups. The final polymer based materials with polyionic ligands were tried as chromatographic packing in the separation of proteins by ion exchange chromatography. The proteins were successfully separated both in the anion and cation exchange mode with higher column yields with respect to the previously proposed materials. The plate heights obtained for poly(AMPS) and poly(DMAEM) grafted poly(DHPM-co-EDM) particles by using proteins as the analytes were 80 and 200 μm, respectively. Additionally, the plate height exhibited no significant increase with the increasing linear flow rate in the range of 1–20 cm/min. The most important property of the proposed strategy is to be applicable for the synthesis of any type of ion exchanger both in the strong and weak form.  相似文献   

20.
To tailor cell–surface interactions, precise and controlled attachment of cell‐adhesive motifs is required, while any background non‐specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on “clickable” groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2‐hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide‐bearing top block, which can participate in well‐established “click” reactions including the highly selective copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell‐adhesive, alkyne‐bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne‐bearing biological moieties via CuAAC or copper‐free alkyne‐azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号