首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effect of CaF2:Eu luminophore synthesis methods on the charge state of europium. We have shown that Eu3+ predominates over Eu2+ in samples obtained by coprecipitation of europium with calcium fluoride, and the ratio Eu3+/Eu2+ grows as the total amount of europium increases. Partial charge conversion of the europium occurs during calcination of the samples, due to changes in the excess fluorine balance. We studied the luminescence, magnetic susceptibility, and EPR of the synthesized samples. We have shown that in a solid solution, europium forms large ordered clusters, determining both the luminescent and the magnetic properties of the material. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 6, pp. 773–779, November–December, 2007.  相似文献   

2.
The local crystal structure of Gd3+ and Eu2+ cubic impurity centers in cadmium fluoride is calculated within the shell model in the pair potential approximation. The local compressibility of the cationic and anionic sublattices of the host lattice is determined in the vicinity of the Gd3+ (Eu2+) impurity ion.  相似文献   

3.
4.
CaF2 crystals doped with Yb3+ ions have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy. EPR spectra of paramagnetic centers (PCs) for cubic (Tc) and tetragonal (Ttet) symmetries were identified. Empirical energy level diagrams were established and crystal field parameters were determined. Information on the CaF2∶Yb3+ phonon spectra was obtained from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyze the crystal lattice distortions in the vicinity of the Yb3+ ion. Within the framework of a superposition model, it is established that four F ions located symmetrically with respect to the fourfold axis from the side of the ion-compensator approach the impurity ion and deviate from the PC axis. The second set of four fluorine ions also approaches the Yb3+ ion and the PC axis. The ion-compensator F also approaches considerably the impurity ion.  相似文献   

5.
The luminescent properties of Eu3+ and Eu2+ ions in sodium pyrophosphate, Na4P2O7, have been studied. The excitation spectrum of the Eu3+ emission in Na4P2O7 consists of several sets of bands in the range 280–535 nm due to 4f–4f transitions of Eu3+ ions and a broad band with a maximum at about 240 nm interpreted to be due to a charge transfer (CT) transition from oxygen 2p states to empty states of the Eu3+ 4f6-configuration. Although the CT band energy is large enough, the quantum efficiency (η) of the Eu3+ emission in Na4P2O7 under CT excitation was estimated to be very low (η ≤ 0.01). In terms of a configurational coordinate model, this fact is interpreted as a result of the high efficiency of a radiationless relaxation from the CT state to the 7F0 ground state of Eu3+ ions occupying sodium sites in Na4P2O7. A strong reducing agent is required in order to stabilize Eu2+ ions in Na4P2O7 during the synthesis. Several nonequivalent Eu2+ luminescence centers in Na4P2O7 were found.  相似文献   

6.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

7.
The Dy3+ and Eu3+ activated K3Al2 (PO4)3 phosphors were prepared by a combustion synthesis. From a powder X-ray diffraction (XRD) analysis the formation of K3Al2 (PO4)3 was confirmed. In the photoluminescence emission spectra, the K3Al2(PO4)3:Dy3+ phosphor emits two distinctive colors: blue and yellow whereas K3Al2(PO4)3:Eu3+ emits red color. Thus the combination of colors gives BYR (blue–yellow–red) emissions can produce white light. These phosphors exhibit a strong absorption between 340 and 400 nm which suggest that present phosphor is a promising candidate for producing white light-emitting diodes (LED).  相似文献   

8.
The photochemical properties of CaF2 crystals activated by Ce3+ and Yb3+ ions are studied. A model of the photodynamic processes induced by pumping UV or VUV radiation in active media is suggested and experimentally verified. This model explains both the presence of color centers of electronic and hole nature in crystals activated by cerium and the mechanism of suppressing of solarization processes after additional activation of the samples by Yb3+ ions. The cross sections of the processes of free-carrier capture by various ytterbium impurity centers are estimated. These impurity centers are established to be effective centers of recombination of free carriers of both signs.  相似文献   

9.
The kinetics of luminescence of Eu3+ ions in Lu2O3:Eu nanospheres with diameters of 100–270 nm and a small standard deviation of the size distribution <15% has been studied. A sharp decrease in the decay time of luminescence of Eu3+ ions in the red range with an increase in the diameter of nanospheres has been attributed to the appearance of a photon mode accelerating spontaneous luminescence, which is confirmed by the calculation of ranges of existence of whispering-gallery modes in studied nanospheres.  相似文献   

10.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

11.
Nanocrystal rods of Eu3+/Tb3+-co-doped ZrO2 were synthesized using a simple chemical precipitation technique. Both ions were successfully doped into the Zr4+ ion site in a mixed structure containing both monoclinic and tetragonal phases. The Eu3+ or Tb3+ singly doped zirconia produced red and green luminescence which are characteristics of Eu3+ and Tb3+ ions, respectively. The co-doped zirconia samples produced blue emission from defect states transitions in the host ZrO2, red and green luminescence from dopant ions giving cool to warm white light emissions. The phosphors were efficiently excited by ultraviolet and near-ultraviolet/blue radiations giving white and red light, respectively. The decay lifetime was found to increase with increasing donor ion concentration contrary to conventional observations reported by previous researchers. Weak quadrupole–quatdrupole multipolar process was responsible for energy transfer from Tb3+ (donor) ion to Eu3+ ion. No energy back-transfer from Eu3+ to Tb3+ ion was observed from the excitation spectra. Temperature-dependent photoluminescence shows the presence of defects at low temperature, but these defects vanished at room temperature and beyond. The Eu3+/Tb3+-co-doped ZrO2 nanocrystal rod is a potential phosphor for white light application using UV as an excitation source. Thermoluminescence measurements show that the inclusion of Tb3+ ion increases trap depths in the host zirconia.  相似文献   

12.
We present the spectroscopic properties and room-temperature cw tunable laser operation of Yb3+-doped CaF2, SrF2 and BaF2 single crystals grown and studied in the same conditions. Emission cross sections, lifetimes, laser thresholds, laser slope efficiencies and laser wavelength tuning ranges are compared. It appears that Yb3+-doped BaF2 might be more promising for diode-pumped high power laser operation. PACS 42.55.Rz; 42.70.Hj  相似文献   

13.
We present the spectroscopic properties and room temperature of a cw tunable laser operation with Yb3+ doped CaF2 single crystals grown in our laboratory. A laser slope efficiency of 50% with respect to the absorbed 920 nm pump power was obtained, and the laser wavelength could be tuned between 1000 and 1060 nm. PACS 42.55R; 42.70An erratum to this article can be found at  相似文献   

14.
ENDOR experimental spectra of Gd3+ tetragonal impurity centers in CaF2 and SrF2 crystals were used to determine the superhyperfine interaction (SHFI) constants of the impurity with 19F nuclear spins of its first coordination sphere and the compensator ion. The distances in the Cd3+F9 complex were estimated within the model of isotropic SHFI constants suggested in [1]. An analysis of the data on the SHFI and spin-Hamiltonian constants [2] in terms of the superposition model indicates significant changes in the contributions (due to the Gd3+ mixed states) to these parameters for the tetragonal centers in comparison with the corresponding contributions for the cubic and trigonal centers in the same crystals.  相似文献   

15.
A study of the luminescence of Eu3+ ions in Y2O3 nanospheres indicates a significant influence of the porous structure of nanoparticles on the luminescence of dopant ions. It is shown that filling the nanopores of initially porous Y2O3 nanospheres shortens the decay time of the spontaneous luminescence of doping europium ions. The change in the decay time is associated with the change in the effective refractive index of the porous nanospheres.  相似文献   

16.
17.
In this paper we study the possibility of using the synthesized nanopowder samples of Gd2Zr2O7:Eu3+ for temperature measurements by analyzing the temperature effects on its photoluminescence. The nanopowder was prepared by solution combustion synthesis method. The photoluminescence spectra used for analysis of Gd2Zr2O7:Eu3+ nano phosphor optical emission temperature dependence were acquired using continuous laser diode excitation at 405 nm. The temperature dependencies of line emission intensities of transitions from 5D0 and 5D1 energy levels to the ground state were analyzed. Based on this analysis we use the two lines intensity ratio method for temperature sensing. Our results show that the synthesized material can be efficiently used as thermographic phosphor up to 650 K.  相似文献   

18.
Submicron samples of Y2O3:Eu3+ phosphor with elevated photoluminescence (PL) efficiency and activator concentration of 9 at % obtained by the sol–gel method were investigated by diffuse reflection spectroscopy and PL spectroscopy. It is found that the diffuse reflection spectrum in the vicinity of the fundamental absorption edge (<300 nm) is distorted by the superposition of the PL of Eu3+ ions, as a result of which the calculated value of optical band gap E g of the Y2O3 matrix is overestimated. An algorithm for eliminating the PL influence on the absorption edge is proposed, and the correct E g values are found to be 4.61 ± 0.12 and 4.50 ± 0.12 eV for annealing at 700 and 1300°C, respectively.  相似文献   

19.
The dependence of the structural reorganization of Eu3+ optical centers in Al2O3-Eu2O3-BiOF films on the annealing temperature has been investigated. It is shown by the methods of crystal field theory and computer simulation that the increase in the annealing temperature from 700 to 1100 °C leads to removal of bismuth from Eu-O-Bi complex centers with the C 3V symmetry in the Al2O3 structure and the change in symmetry from D 3 to O h for a large fraction of EuAlO3 centers.  相似文献   

20.
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)3 precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号