首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Summary HPTLC densitometry and HPLC are considered for the simultaneous determination of the degradation products of piroxicam (2-aminopyridine, DP-I and DP-II). The substances were separated on silica gel with fluorescence indicator in ethylacetate — toluene — diethylamine (10∶10∶5) and toluene — absolute ethanol — glacial acetic acid (8∶1.2∶0.5) systems. The measuring absorbance (detection of reflectance) of the separated substances was carried out “in situ” at 296 nm using 4-level calibration (external standard, nonlinear regresson function) in the concentration range 600–1200 ng 2-aminopyridine/spot and 300–600 ng DP-I and DP-II/spot. The HPLC method was carried out using RP-8 stationary phase and methanol + phosphate-citrate buffer, pH 3 mobile phase with addition of sodium pentanesulfonate (40+60, v/v). 2-aminopyridine wass detected at 300 nm, DP-I at 280 nm and DP-II at 248 nm. The concentration range for 2-aminopyridine is 2–40 μg/ml, for DP-I and DP-II 2–20 μg/ml (for an injection volume of 10 μl). The results were evaluated by linear regression analysis.  相似文献   

2.
A rapid reversed-phase (RP) high-performance liquid chromatography method for the isolation of bilirubin from its photoproducts (e.g., biliverdin) is reported. The method is based on isocratic elution using methanol:water as the mobile phase. A 24 full-factorial experimental design approach was adopted. For the optimization, the best separation was obtained using a flow rate of 1.50 mL/min, a mobile phase of 99∶1 methanol:water (v/v) at pH 3.60, and a 150×4.6 mm id RP (C18) column containing 5-μm particles. These conditions produced the fastest total retention time of 3.38±0.055 min, and other chromatographic parameters were acceptable. Under the optimum conditions, a linear calibration curve for bilirubin was obtained over the 1.0–40.0 μg/L concentration range studied. The limit of quantification was 0.79 g/L and the limit of detection was 0.24 μg/L. Bilirubin in solution was monitored by ultraviolet detection at 450 nm.  相似文献   

3.

Abstract  

A stereoselective HPLC method has been developed for the simultaneous determination of oxprenolol enantiomers in urine and pharmaceutical products. Enantiomeric resolution of oxprenolol was achieved on cellulose tris(3,5-dichlorophenylcarbamate) immobilized onto a 5 μm spherical porous silica chiral stationary phase (CSP) known as Chiralpak IC with UV detection at 273 nm. The mobile phase consisted of n-hexane:isopropanol:triethylamine 70:30:0.1 (v/v/v) at a flow rate of 1.0 cm3/min. The method was validated for its linearity, accuracy, precision, and robustness. The calibration curves were linear over the range of 0.5–75 μg/cm3, with a detection limit of 0.1 μg/cm3 for each enantiomer. An average recovery of 99.0% and a mean relative standard deviation of 2.6% at 40.0 μg/cm3 for S-(−)- and R-(+)-enantiomers were obtained. The overall recoveries of oxprenolol enantiomers from pharmaceutical formulations were in the range 97.5–99.0%, with RSDs ranging from 0.6 to 0.8%. The mean extraction efficiency of oxprenolol from urine was in the range of 86.0–93.0% at 0.5–5 μg/cm3 for each enantiomer. The assay method proved to be suitable as a chiral quality control for oxprenolol formulations using HPLC and for therapeutic drug monitoring.  相似文献   

4.
Summary A sensitive and rapid routine HPLC method is proposed for quantitative estimation of morphine hydrochloride and hydromorphone hydrochloride in pharmaceutical dosage forms. The drugs were chromatographed on a C18 reversed-phase column; the mobile phase was acetonitrile-water, 35:65 (v/v), containing sodium dodecyl sulphate (0.5%, w/v), as ion pairing reagent, and acetic acid (0.4% v/v). Detection was at 230 nm. The optimized method was validated and linearity (r>0.999), precision, and accuracy were found to be acceptable within the concentration ranges 86–124 μg mL−1 for morphine hydroloride and 60–180 μg mL−1 for hydromorphone hydrochloride. The method is being used to investigate the stability of morphine hydrochloride and hydromorphone hydrochloride in solution used for intramuscular injection.  相似文献   

5.
A new and simple isocratic high-performance liquid chromatographic method with ultraviolet detection is described for simultaneous determination of active guaiphenesin and preservative sodium benzoate in Liqufruta garlic cough medicine formulation. The chromatographic separation was achieved using a Zorbax CN; 150 mm × 4.6 mm and 5 μm particle size column employing acetonitrile and water (20: 80, v/v) containing 0.1% formic acid (pH 3.5 ± 0.05) as the mobile phase. The method was validated with respect to linearity, range, precision, accuracy, specificity, limit of detection and limit of quantitation. The both analytes were detected by UV-Vis detector at 245 nm. The method was linear over the concentration range of 0.2–0.8 mg/mL and 0.02–0.06 mg/mL for guaiphenesin and sodium benzoate, respectively. The limit of detection was found to be 0.14 μg/mL for GP and 0.06 μg/mL for SB and the quantification limit was 0.54 μg/mL for GP and 0.22 for SB. Accuracy, evaluated as recovery, was in the range of 97.8–100.0%. Intra-day precision and intermediate precision showed relative standard deviation <1% in each case.  相似文献   

6.
 A reversed-phase HPLC-method for the separation of mixtures of collectors for the flotation of heavy metal minerals is described. It is based on a Nucleosil 5C18 column, isocratic elution and UV-detection at 238 nm. The mobile phase is methanol-water-5% phosphoric acid (40:60:4, v/v). The method is applied to the determination of six collectors in aqueous solutions from flotation processes. The relative standard deviations are 1.6–3.2% in the concentration range 2–10 mg/L. The detection limits are 1 μg/L for 8-hydroxyquinoline, dimethylglyoxime and salicylic acid, 2 μg/L for salicylhydroxamic acid and 5 μg/L for benzenetriazol and salicylaldoxime, respectively. Received: 19 April 1996/Revised: 14 August 1996/Accepted: 23 August 1996  相似文献   

7.
A new high-performance liquid chromatography assay was developed for the determination of minocycline in plasma and brain. A solid–liquid extraction procedure was coupled with a reversed-phase HPLC system. The system requires a mobile phase consisting of acetonitrile:water:perchloric acid (26:74:0.25, v/v/v) adjusted to pH 2.5 with 5 M sodium hydroxide for elution through a RP8 column (250 × 3.0 mm, i.d.) with UV detection set at 350 nm. The method proved to be accurate, precise (RSD < 20%) and linear between 0.15–20 μg mL−1 in plasma and 1–20 μg mg−1 in brain. The method was successfully applied to a blood-brain barrier minocycline transport study.  相似文献   

8.
Two validated analytical methods have been developed to determine glimepiride in pharmaceutical formulations using HPLC and 1st order derivative spectrophotometric techniques. Employing reverse phase HPLC method, the drug was analyzed by pumping a mixture of acetonitrile and 2% formic acid solution, pH 3.5 (80: 20 v/v) through a C18 column (250 × 4.6 mm, 5 μm) and detecting the eluents at 228 nm. The linearity range was found to be 20–140 μg/mL with mean recovery of 100.52 ± 0.33%. The second method was based on the formation of a complex of the drug with 2,3,5-triphenyl-2H-tetrazolium chloride in basic media. 1st order derivative spectrum made it possible to detect the complex at 413.5 nm. The linearity range was found to be 40–160 μg/mL, with mean recovery of 100.33 ± 0.47%. Both the proposed methods can reliably be used for routine analysis of glimepiride in raw material as well as in pharmaceutical formulations. The article is published in the original.  相似文献   

9.
A simple, economic, selective, precise, and accurate high-performance liquid chromatographic (HPLC) method for the analysis of trimetazidine hydrochloride in both bulk drug and pharmaceutical formulations was developed and validated in the present study. The mobile phase consisted of water: methanol: triethylamine (75: 25: 0.1 v/v/v), and pH 3.3 was adjusted with orthophosphoric acid. This system was found to give a sharp peak of trimetazidine hydrochloride at a retention time of 3.375 ± 0.04 min. HPLC analysis of trimetazidine hydrochloride was carried out at a wavelength of 232 nm with a flow rate of 1.0 mL/min. The linear regression analysis data for the calibration curve showed a good linear relationship with a regression coefficient of 0.997 in the concentration range of 5–90 μg/mL. The linear regression equation was y = 35362x − 8964.2. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.6 and 10.9 μg/mL, respectively. The developed method was employed with a high degree of precision and accuracy for the analysis of trimetazidine hydrochloride. The developed method was validated for accuracy, precision, robustness, detection, and quantification limits as per the ICH guidelines. The wide linearity range, accuracy, sensitivity, short retention time, and composition of the mobile phase indicated that this method is better for the quantification of trimetazidine hydrochloride. The text was submitted by the authors in English.  相似文献   

10.
A method for the determination/identification of residual sulfadimidine (SDD) in milk and eggs by high-performance liquid chromatography (HPLC) with a photo-diode array detector was developed. The sample preparation was performed by shaking with a mixture of 20% (w/v) trichloroacetic acid-methanol (4:1, v/v) followed by ultra-filtration using Molcut II?. A LiChrospher? 100 RP-8 (e) column and a mobile phase of 4% (v/v) acetic acid solution-acetonitrile (6:4, v/v) were used. The average recoveries from spiked SDD samples were 80.8–88.0% with coefficients of variation of 2.8–5.5%. The limits of detection in milk and eggs were 0.01 μg/mL and 0.01 μg/g, respectively. The total time required for the analysis of one sample was less than 20 min. Received: 7 October 1998 / Revised: 29 December 1998 / Accepted: 30 December 1998  相似文献   

11.
A simple, sensitive and rapid high performance liquid chromatographic method was developed and validated for the simultaneous determination of potassium clavulanate and cefadroxil in synthetically prepared tablets. Chromatographic separation and detection was carried out on a C-18 column using 0.05 M potassium dihydrogen phosphate buffer (pH 5.0) and acetonitrile in the ratio of 94: 06 (v/v) as mobile phase at wavelength of 225 nm. The method was linear in the concentration range of 3.75–22.5 μg/mL for potassium clavulanate and 15–90 μg/mL for cefadroxil. The flow rate was 1.0 mL/min and the total analysis time was less than 10 min. The mean recoveries was found to be greater than 99% with RSD less than 1.0%. The proposed method was validated by performing linearity, recovery, specificity, robustness, LOD/LOQ and within-day and between-day precision. The chromatographic results obtained from the synthetically prepared tablets show that the method is highly precise and accurate for the simultaneous quantitation of clavulanate potassium and cefadroxil.  相似文献   

12.
A sensitive method based on high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed for the determination of carbamazepine (CBZ) and one of its active metabolites, carbamazepine-10,11-epoxide (CBZ-E) in human plasma. CBZ, CBZ-E and the internal standard (IS) 10,11-dihydrocarbamazepine were extracted from human plasma into methyl tert-butyl ether. CBZ, CBZ-E and the IS were successfully separated on an RP C18 column with a mobile phase of acetonitrile:methanol:water (18:19:63, v/v/v) and monitored via UV detection at 210 nm. The calibration curves were linear over the concentration ranges of 0.01–10 μg/mL for CBZ and 0.005–5 μg/mL for CBZ-E in human plasma, respectively. The method displayed excellent sensitivity, precision and accuracy, and was successfully applied to the quantification of CBZ and CBZ-E in human plasma after oral administration of a single 200 mg CBZ CR tablet. This method is suitable for bioequivalence studies following single doses given to healthy volunteers.  相似文献   

13.
N. Furusawa 《Chromatographia》1999,49(7-8):369-373
Summary A rapid method for the simultaneous determination/identification of residual oxytetracycline (OTC) and sulphadimidine (SDD) in meats (beef, pork, chicken) and eggs by high-performance liquid chromatography (HPLC) was developed. The extraction of OTC and SDD was performed using a Sep-Pak? CN cartridge. The extracts contained OTC/SDD analytes when examined by HPLC using a LiChrospher? 100 RP-8 end-capped column and a mobile phase of acetonitrile-acetic acid-water (28:4:68, v/v/v) with a photodiode array detector. The average recoveries from spiked samples (0.1 μg g−1 and 1.0 μg g−1) were in excess of 80.2% with coefficients of variation between 1.5 and 5.0%. The limits of detection for OTC and SDD were 0.05 and 0.02 μg g−1, respectively.  相似文献   

14.
A method for the determination of imidacloprid in paddy water and soil was developed using liquid chromatography electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). Separation of imidacloprid was carried out on a Shimadzu C18 column (150 mm × 4.6 mm, 4.6 μm) with an acetonitrile-water (50: 50, v/v) mobile phase containing 0.1% of acetic acid. The flow rate was 0.3 mL/min in isocratic mode. The product ion at 209 m/z was selected for quantification in multiple-reaction monitoring scan mode. Imidacloprid residues in soil were extracted by a solid-liquid extraction method with acetonitrile. Water samples were filtered and directly injected for analysis without extraction. Detection limits of 0.5 μg/kg and 0.3 μg/L were achieved for soil and water samples, respectively. The method had recoveries of 90 ± 2% (n = 4) for soil samples and 100 ± 2% (n = 4) for water samples. A linear relationship was observed throughout the investigated range of concentrations (1–200 μg/L), with the correlation coefficients ranging from 0.999 to 1.000.  相似文献   

15.
Summary A simple, rapid and accurate, routine-HPLC method is described for simultaneous determination of acetaminophen, caffeine and chlorpheniramine maleate in a new tablet formulation Chromatographic separation of the three pharmaceuticals was achieved on a Hypersil CN column (150×5.0 mm, 5 μm) using a mobile phase comprising a mixture of acetonitrile, an ion-pair solution and tetrahydrofuran (13:14:87, v/v,pH4.5). The flow-rate was changed from 1.0 mL min−1 (in 0≈7.5 min) to 1.8 mL min−1 (after 3.5 min). was complete in <10 min. The method was validated for system suitability, linearity, accuracy, precision, limits of detection and quantitation, and robustness. Linearity, accuracy and precision were found to be acceptable over the ranges 31.6≈315.8 μg mL−1 for acetaminophen, 9.5≈94.6 μg mL−1 for caffeine and 1.4≈13.8 μg mL−1 for chlorpheniramine maleate.  相似文献   

16.
Two stability indicating methods have been developed for determining rofecoxib in the presence of its degradation product. The first suggested method is high performance liquid chromatography (HPLC), in which analysis is carried out using hypersil BDS C18 column (250 × 4.6 mm I.D.) with mobile Phase consisting of 0.05 M phosphate buffer (pH 3.5) and acetonitrile (70:30 v/v). A linear relationship was obtained between the detector response at 225 nm and the corresponding concentration of the studied rofecoxib in the concentration range (1–6 μg / 10 μl) with mean % recovery of 99.80 ± 0.405. The second method depends on the quantitative densitometric evaluation of thin layer chromatograms (HPTLC) with mobil phase consisting of toluene: chloroform: methanol (60: 35: 5 v/v/v) by using fluorescent high performance silica gel 60 plate. A linear relationship was obtained between peak area and the concentration of the cited drug in the range 1–6 μg/spot with a mean % recovery of 99.79 ± 0.185. The suggested methods are precise, accurate, rapid and prove their specificity in the presence of its degradation products. Both procedures are successfully applied to determine the drug in the presence of its degradation product and also in their pharmaceutical formulations.  相似文献   

17.
 A method for direct analysis of tea and coffee samples by using electrothermal atomic absorption spectrometry is described. Coffee and tea from different sources were analyzed without digestion step. For slurry analyses the samples were ground, sieved at 105 μm and then suspended in 0.2% v/v HNO3 and 10% v/v Triton X-100 medium. For liquid phase aluminium determination the samples were prepared in the same way and only the liquid is introduced directly into the graphite furnace. Calibration was performed by aqueous standards for both cases and the determinations were carried out in the linear range between 50 and 250 μg L−1. The characteristic mass of aluminium and the detection limit were 45 pg and 2 μg L−1, respectively. Using a typical 0.1% m/v coffee slurry sample, the relative standard deviation of measurements (n=15) for repeatability was about 8.2%. Received December 27, 1998. Revision March 18, 1999.  相似文献   

18.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay for the simultaneous determination and quantification of cefpirome and cetirizine or cefpirome and levocetirizine in pharmaceutical formulations and human plasma without changing the chromatographic conditions is described. Chromatographic separations were performed on a prepacked Nucleosil 120, C18 (5 μm, 12.5 ± 0.46 mm) column using CH3CN: H2O (75: 25, v/v) as a mobile phase at a flow rate of 1 mL/min while UV detection was performed at 232 nm for monitoring the effluent. A number of other brands of C18 columns were also employed which had a significant effect on the separation. The method has been validated over the concentration range of 0.5–50 μg/mL (r 2 > 0.999). The limit of detection (LOD) and quantification (LOQ) for cefpirome and levocetirzine in pharmaceutical formulations and serum were in the range 0.24–1.31 μg/mL. Analytical recovery from human plasma was >98%, and the within and between-day relative standard deviation was <3.1%. The small sample volume and simplicity of preparation make this method suitable for use in pharmaceutical industries, drug research centers, clinical laboratories, and forensic medical centers. The text was submitted by the authors in English.  相似文献   

19.
An analytical method for detecting and quantifying cefotaxime in plasma and several tissues is described. The method was developed and validated using plasma and tissues of rats. The samples were analyzed by reversed phase liquid chromatography (HPLC) with UV detection (254 nm). Calibration graphs showed a linear correlation (r > 0.999) over the concentration ranges of 0.5–200 μg/mL and 1.25–25 μg/g for plasma and tissues, respectively. The recovery of cefotaxime from plasma standards prepared at the concentrations of 25 μg/mL and 100 μg/mL was 98.5 ± 3.5% and 101.8 ± 2.2%, respectively. The recovery of cefotaxime from tissue standards of liver, fat and muscle, prepared at the concentration of 10 μg/g was: 89.8 ± 1.2% (liver), 103.9 ± 6.5% (fat) and 97.8 ± 2.1% (muscle). The detection (LOD) and quantitation (LOQ) limits for plasma samples were established at 0.11 μg/mL and 0.49 μg/mL, respectively. The values of these limits for tissues samples were approximately 2.5 times higher: 0.3 μg/g (LOD) and 1.25 μg/g (LOQ). For plasma samples, the deviation of the observed concentration from the nominal concentration was less than 5% and the coefficient of variation for within-day and between-day assays was less than 6% and 12%, respectively. The method was used in a pharmacokinetic study of cefotaxime in the rat and the mean values of the pharmacokinetic parameters are given. Received: 25 May 1998 / Revised: 27 July 1998 / Accepted: 1 August 1998  相似文献   

20.
A simple TLC method has been developed for the simultaneous determination of heraclenin and heraclenol in the roots of Heracleum candicans D.C. The analytes were separated on silica gel F254 plates with toluene:ethyl acetate (7:3) and scanned using densitometry at 366 nm. The method was validated in terms of precision, repeatability and accuracy. The linear range for heraclenin was found to be 4 - 10 μg per spot with correlation coefficient of 0.997 while for heraclenol it was 1–5 μg per spot with a correlation coefficient of 0.985. The two compounds were quantified in different samples of H. candicans and were found to be present in the range of 1.02 – 1.36% and 0.29 – 0.43% w/w. The method was found to be very simple, accurate, precise and economical and can be used for routine quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号