首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Damage threshold of crystals SiO2 and YAG against 60-900 fs, 800 nm laser pulses are reported. The breakdown mechanisms were discussed based on the double-flux model and Keldysh theory. We found that impact ionization plays the important role in the femtosecond laser-induced damage in crystalline SiO2, while the roles of photoionization and impact ionization in YAG crystals depend on the laser pulse durations.  相似文献   

2.
We studied the single-shot damage in magnesium fluoride irradiated by 800 nm femtosecond (fs) laser. The dependence of damage thresholds on the laser pulse durations from 60 to 750 fs was measured. The pump-probe measurements were carried out to investigate the time-resolved electronic excitation processes. A coupled dynamic model was applied to study the microprocesses in the interaction between fs laser and magnesium fluoride. The results indicate that both multiphoton ionization and avalanche ionization play important roles in the femtosecond laser-induced damage in MgF2.  相似文献   

3.
Millimeter-long filaments and accompanying luminous plasma and defect channels created in fused silica (FS) by single focused femtosecond laser pulses with supercritical powers were probed in situ using optical imaging and contact ultrasonic techniques. Above the threshold pulse energy Eopt = 5 μJ corresponding to a few megawatt power levels pulses collapse due to self-focusing, producing channels filled by electron-hole plasma and luminescent defects, and exhibits predominantly compressive pressure transients. Analysis of the optical and ultrasonic response versus the laser pulse energy suggests that filamentary pulse propagation in the channels occurs with considerable dissipation of about ∼10 cm−1. The predominant ionization mechanism is most likely associated with avalanche ionization, while the main mechanism of optical absorption is free-carrier absorption via inverse Bremsstrahlung interaction with the polar lattice.  相似文献   

4.
Optical multimode fibers are applied in materials processing (e.g. automotive industry), defense, aviation technology, medicine and biotechnology. One challenging task concerning the production of multimode fibers is the enhancement of laser-induced damage thresholds. A higher damage threshold enables a higher transmitted average power at a given fiber diameter or the same power inside a thinner fiber to obtain smaller focus spots.In principle, different material parameters affect the damage threshold. Besides the quality of the preform bulk material itself, the drawing process during the production of the fiber and the preparation of the fiber end surfaces influence the resistance. Therefore, the change of the laser-induced damage threshold of preform materials was investigated in dependence on a varying thermal treatment and preparation procedure.Single and multi-pulse laser-induced damage thresholds of preforms (F300, Heraeus) were measured using a Q-switched Nd:YAG laser at 1064 nm wavelength emitting pulses with a duration of 15 ns, a pulse energy of 12 mJ and a repetition rate of 10 Hz. The temporal and spatial shape of the laser pulses were controlled accurately.Laser-induced damage thresholds in a range from 150 J cm−2 to 350 J cm−2 were determined depending on the number of pulses applied to the same spot, the thermal history and the polishing quality of the samples, respectively.  相似文献   

5.
The damage morphologies, threshold fluences in ZnO films were studied with femtosecond laser pulses. Time-resolved reflectivity and transmissivity have been measured by the pump-probe technique at different pump fluences and wavelengths. The results indicate that two-phase transition is the dominant damage mechanism, which is similar to that in narrow band gap semiconductors. The estimated energy loss rate of conduction electrons is 1.5 eV/ps.  相似文献   

6.
In this work, the nanostructuring induced in femtosecond (fs) laser irradiation of biopolymers is examined in self-standing films of collagen and gelatine. Irradiation by single 90 fs pulses at 800, 400 and 266 nm is shown to result in the formation of a modified layer with submicrometric size structures. The size and uniformity of the observed features are strongly dependent on irradiation wavelength and on the characteristics of the biopolymer (water content and mechanical strength). Examination of the films by laser induced fluorescence serves to assess the chemical modifications induced by laser irradiation, revealing changes in the emission bands assigned to the aromatic amino acid tyrosine and its degradation products. The results are discussed in the framework of a mechanism involving the generation of large free-electron densities, through multiphoton and avalanche ionization, which determine the temperature and stress distribution in the irradiated volume.  相似文献   

7.
Zhao Y  Liang Y  Zhang N  Wang M  Zhu X 《Optics letters》2008,33(21):2467-2469
The effects of different laser pulse widths on laser-induced ionization imaging of microstructures embedded in transparent materials are investigated. It is shown that a femtosecond laser-induced ionization probe can detect the variation of elemental composition of the sample materials with a higher contrast ratio, whereas the ionization probe generated by picosecond laser pulses is more sensitive to the structural change inside optical materials, which can be well explained by the different roles of multiphoton ionization and avalanche ionization involved in material breakdown. These results also suggest that an optimum diagnosis could be obtained if well-selected laser parameters are employed in ultrafast laser ionization imaging.  相似文献   

8.
Neutral magnesium atom emission from nanostructured MgO thin films is induced using two-color nanosecond laser excitation. We find that combined vis/UV excitation, for single-color pulse energies below the desorption threshold, induces neutral Mg-atom emission with hyperthermal kinetic energies in the range of 0.1-0.2 eV. The observed metal atom emission is consistent with a mechanism involving rapid electron transfer to three-coordinated Mg surface sites. The two-color Mg-atom signal is significant only for parallel laser polarizations and temporally overlapped laser pulses indicating that intermediate excited states are short-lived compared to the 5 ns laser pulse duration.  相似文献   

9.
卞华栋  戴晔  叶俊毅  宋娟  阎晓娜  马国宏 《物理学报》2014,63(7):74209-074209
本文通过数值模拟(3+1)维扩展的广义非线性薛定谔方程,研究了紧聚焦飞秒激光脉冲在诱导石英玻璃的非线性电离过程中电子动量弛豫时间对于该电离过程的影响.计算结果证明电子动量弛豫时间会直接影响入射脉冲在焦点区域所形成的峰值场强、自由电子态密度和能流等参量的分布态势,因此在与实验结果相比较后发现适合于相互作用过程的电子动量弛豫时间的理论值约为1.27 fs.进一步的研究表明,电子动量弛豫时间与逆韧致吸收效应、雪崩电离的概率、等离子体密度、等离子体的自散焦效果以及间接引起的焦平面位置的移动都有着密切的联系.当前的研究结果表明电子动量弛豫时间在飞秒激光脉冲与物质相互作用的过程中发挥着重要作用.  相似文献   

10.
We use surface-femtosecond laser mass spectrometry to study the fragments/products formed when trinitrotoluene (TNT) is subjected to femtosecond laser pulse irradiation and to study the conditions under which TNT is removed from a solid surface. In surface-femtosecond laser mass spectrometry a compound is deposited on a solid substrate and is desorbed into vacuum by femtosecond irradiation forming a plume of ionized and neutral species. The positive or negative ions are then accelerated by an electric potential and allowed to drift in the field-free region of a time-of-flight mass spectrometer. The mass-to-charge ratio of each ion is obtained using the value of the accelerating field and the ion flight time. In this paper we report femtosecond laser mass spectra for the positive ions formed by desorbing TNT with 130 fs pulses centered at 800 nm for fluences ranging from 7 to 1.4 × 105 J/m2. The conditions under which TNT removal and ionization occur are also discussed.  相似文献   

11.
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed.  相似文献   

12.
The laser-induced backside etching of fused silica with gallium as highly absorbing backside absorber using pulsed infrared Nd:YAG laser radiation is demonstrated for the first time. The influence of the laser fluence, the pulse number, and the pulse length on the etch rate and the etched surface topography was studied. The comparable high threshold fluences of about 3 and 7 J/cm2 for 18 and 73 ns pulses, respectively, are caused by the high reflectivity of the fused silica-gallium interface and the high thermal conductivity of gallium. For the 18 and 73 ns long pulses the etch rate rises almost linearly with the laser fluence and reaches a value of 350 and 300 nm/pulse at a laser fluence of about 12 and 28 J/cm2, respectively. Incubation processes are almost absent because etching is already observed with the first laser pulse at all etch conditions and the etch rate is constant up to 30 pulses.The etched grooves are Gaussian-curved and show well-defined edges and a smooth bottom. The roughness measured by interference microscopy was 1.5 nm rms at an etch depth of 0.6 μm. The laser-induced backside etching with gallium is a promising approach for the industrial application of the backside etching technique with IR Nd:YAG laser.  相似文献   

13.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

14.
Self-compression of multi-millijoule femtosecond laser pulses and dramatic increase of the peak intensity are found in pressurized helium and neon within a range of intensity in which the ionization modification of the material parameters by the pulse is negligible. The pulse propagation is studied by the (3 + 1)-dimensional nonlinear Schrödinger equation including basic lowest order optical processes - diffraction, second order of dispersion, and third order of nonlinearity. Smooth and well controllable pulse propagation dynamics is found. Construction of compressed pulses of controllable parameters at given space target point by a proper chose of the pulse energy and/or gas pressure is predicted.  相似文献   

15.
We examine the nanosecond and femtosecond UV laser ablation of poly(methyl methacrylate) (PMMA) as a function of molecular weight (Mw). For laser ablation with nanosecond laser pulses, at the excimer wavelengths 248 nm and 193 nm, we show that high temperatures develop; yet the dynamics of material ejection differs depending on polymer Mw. The results on the nanosecond ablation of polymers are accounted within the framework of bulk photothermal model and the results of molecular dynamics simulations. Turning next to the 248 nm ablation with 500 fs laser pulses, the ablation threshold and etching rates are also found to be dependent on polymer Mw. In addition, ablation results in morphological changes of the remaining substrate. Plausible mechanisms are advanced.  相似文献   

16.
Creation of laser-induced morphology features, particularly laser-induced periodic surface structures (LIPSS), by a 532 nm picosecond Nd:YAG laser on crystalline silicon is reported. The LIPSS, often termed ripples, were produced at average laser irradiation fluences of 0.7, 1.6, and 7.9 J cm−2. Two types of ripples were registered: micro-ripples (at micrometer scale) in the form of straight parallel lines extending over the entire irradiated spot, and nano-ripples (at nanometer scale), apparently concentric, registered only at the rim of the spot, with the periodicity dependent on laser fluence. There are indications that the parallel ripples are a consequence of the partial periodicity contained in the diffraction modulated laser beam, and the nano-ripples are very likely frozen capillary waves. The damage threshold fluence was estimated at 0.6 J cm−2.  相似文献   

17.
The effect of sub-threshold pulses of circularly polarized Ti:sapphire femtosecond laser system on crystalline (1 0 0) silicon wafer was investigated. Surface damage morphologies were studied by irradiating the test silicon surface with pulses (peak fluence of 0.25 J/cm2) in succession. These pulses were below the single-pulse surface damage threshold. After the few initial pulses, the observed surface damage morphologies were found to be characterized by a minor phase change region and a major surface damage area at the center, corresponding to the well-known laser-induced periodic surface structure (LIPSS). Further increase in the number of pulses resulted in the formation of new surface morphologies with different features such as ablation, modification, and re-deposited materials. These features were reproducible and more distinguishable at higher number of pulses.  相似文献   

18.
The impact of ultra-short laser pulses induces intensity-dependent non-equilibrium processes in the surface region of dielectric targets, resulting in desorption of surface constituents. We report time-resolved studies on particle ejection from CaF2 and BaF2 targets.Pump-probe time-of-flight mass spectrometry (ToF MS) was used to measure the particle yields as a function of the delay time between pairs of sub-damage threshold laser pulses, thus obtaining the temporal dynamics of the laser-excited charged particle emission.In a correlative manner, the positive ion, electron and negative ion desorption yields dependence on the pump-probe delay time reveal a coherence peak around zero delay (similar to a two-pulse autocorrelation), accounting for the increase of the ion yield with laser intensity. Additionally, the measurements reveal a delayed peaks at ∼900 fs (BaF2) and ∼300 fs (CaF2). For comparison, we present time-resolved studies on electron emission from aluminum targets with pump and probe pulses below the damage threshold. The measurements show, again, the autocorrelation peak in the coherence region and an additional increase in the electron yield when the pulses are several picoseconds apart.The autocorrelation could also stand for the dephasing time of the electronic coherence, while the delayed peaks may reveal for the time needed for the collisional energy to be transferred to the lattice. The pump pulse induces a new unstable phase, which is further destabilized by the probe pulse.A corresponding qualitative picture for temporal dynamics of femtosecond (fs) laser-induced particle emission is proposed.  相似文献   

19.
The photo-bleaching of single living cells excited by femtosecond laser irradiation was observed in situ to study the nonlinear interaction between ultrafast laser pulses and living human breast MDA-MB-231 cells. We conducted a systematic study of the energy dependence of plasma-mediated photo-disruption of fluorescently labeled subcellular structures in the nucleus of living cells using near-infrared (NIR) femtosecond laser pulses through a numerical aperture objective lens (0.75 NA). The behavior of photo-bleached living cells with fluorescently labeled nuclei was observed for 18 h after femtosecond laser irradiation under a fluorescence microscope. The photo-bleaching of single living cells without cell disruption occurred at between 470 and 630 nJ. To study the photo-disruption of subcellular organelles in single living cells using the nonlinear absorption excited by a NIR femtosecond laser pulse, the process of photo-bleaching without photo-disruption provides key information for clarifying the nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent fluorescently labeled living cells.  相似文献   

20.
Surface texturing of the metals, including steels, gained a new dimension with the appearance of femtosecond lasers. These laser systems enable highly precise modifications, which are very important for numerous applications of metals. The effects of a Ti:sapphire femtosecond laser with the pulse duration of 160 fs, operating at 775 nm wavelength and in two operational regimes - single pulse (SP) and scanning regime, on a high quality AISI 1045 carbon steel were studied. The estimated surface damage threshold was 0.22 J/cm2 (SP). Surface modification was studied for the laser fluences of 0.66, 1.48 and 2.37 J/cm2. The fluence of 0.66 J/cm2, in both working regimes, induced texturing of the material, i.e. formation of periodic surface structures (PSS). Their periodicity was in accordance with the used laser wavelength. Finally, changes in the surface oxygen content caused by ultrashort laser pulses were recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号