首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The temperature-dependent photoluminescence (PL) characteristics of zinc oxide (ZnO) embedded into the voids of synthetic opal were studied. ZnO was infiltrated into opal from aqueous solution with zinc nitrate precursor followed by thermal annealing. The PL spectra of the ZnO powder exhibit very high and broad emission peaks in the green region due to crystal defects, such as oxygen vacancies and zinc ion interstitials. In contrast to the PL spectra of ZnO powder, nanocrystals of ZnO embedded into the voids of FCC packed opal matrix exhibit dominant ultraviolet (UV)-blue and rapidly decreasing green PL emissions with decreasing temperature. The temperature-dependent PL characteristics show that the green band suppression in the ZnO nanocrystals is due to the influence of photonic crystal. The infiltration of nanoparticles into synthetic opal may be used for the fabrication of polycrystalline ZnO with dominant UV-blue PL. These results indicate that the luminescent materials embedded into photonic crystal may be promising for the fabrication of the RGB pixels in full-color displays.  相似文献   

2.
Photoluminescence of bare and ZnO infilled artificial opals was investigated. A presence of a photonic band gap results in distortion of the photoluminescence spectra of both the bare and ZnO infilled opal nanocomposite. Filling of the opal with ZnO resulted in a shift of the Bragg diffraction peak from 430 to 460 nm. The emission from ZnO infilled opal contains no UV photoluminescence from ZnO nanocrystals, while the ZnO nanocrystals deposited on substrate by the same method exhibit strong excitonic UV emission. Although a high temperature treatment in ambient air results in an increase in the photoluminescence intensity of the ZnO nanocrystals, the quenched behavior of the excitonic emission from ZnO nanocrystals embedded in the opal matrix remains. A domination of the artificial opal matrix intrinsic emission in the photoluminescence spectra from the untreated as well as heat treated ZnO filled opal nanocomposites is observed.  相似文献   

3.
We consider two equations for the filling factor estimation of infiltrated zinc oxide (ZnO) in silica (SiO2) opal and gallium nitride (GaN) in ZnO opal. The first equation is based on the effective medium approximation, while the second one—on Maxwell-Garnett approximation. The comparison between two filling factors shows that both equations can be equally used for the estimation of the quantity of infiltrated nanoparticles inside opal photonic crystal.  相似文献   

4.
Pyramidal ZnO nanorods with hexagonal structure having c-axis preferred orientation are grown over large area silica substrates by a simple aqueous solution growth technique. The as-grown nanorods were studied using XRD, SEM and UV-vis photoluminescence (PL) spectroscopy for their structural, morphological and optical properties, respectively. Further, the samples have also been annealed under different atmospheric conditions (air, O2, N2 and Zn) to study the defect formation in nanorods. The PL spectra of the as-grown nanorods show narrow-band excitonic emission at 3.03 eV and a broad-band deep-level emission (DLE) related to the defect centers at 2.24 eV. After some mild air annealing at 200 °C, fine structures with peaks having energy separation of ∼100 meV were observed in the DLE band and the same have been attributed to the longitudinal optical (LO) phonon-assisted transitions. However, the annealing of the samples under mild reducing atmospheres of N2 or zinc at 550 °C resulted in significant modifications in the DLE band wherein high intensity green emission with two closely spaced peaks with maxima at 2.5 and 2.7 eV were observed which have been attributed to the VO and Zni defect centers, respectively. The V-I characteristic of the ZnO:Zn nanorods shows enhancement in n-type conductivity compared to other samples. The studies thus suggest that the green emitting ZnO:Zn nanorods can be used as low voltage field emission display (FED) phosphors with nanometer scale resolution.  相似文献   

5.
The photo and cathodoluminescence of zinc oxide (ZnO) filled opal arrays, as well as ZnO nanocrystals prepared by a chemical deposition method were investigated. The photoluminescence (PL) from the arrays was studied using angular resolution. The PL spectra of the filled opal exhibited a dip corresponding to the array’s photonic band gap. ZnO nanocrystals embedded in the opal matrix demonstrated quenched excitonic emission while the opal matrix showed enhanced emission. This effect is explained by an energy transfer from ZnO nanocrystals to the opal matrix.  相似文献   

6.
Quantum size effect (QSE) and very efficient laser action were observed in ZnO-mesoporous CMI-1 silica nanocomposites prepared through the incorporation of ZnO nanoparticles inside the channels of a silica mesoporous material CMI-1. The incorporation was made by direct impregnation of the mesoporous material in a zinc nitrate aqueous solution followed by calcination. The PL spectrum of the nanocomposites presents a significant blue-shift corresponding to the enhancement of the semiconductor band gap. Being excited by incident photons with energy of 1.82 eV, the ZnO nanoparticles exhibit spontaneous emission due to the excitonic recombination. In our samples, spontaneous emission turns to stimulated emission when the pumping intensity reaches a threshold value. This effect implies a two-photon excitation which was never observed with ZnO nanoparticles. This paper deals with results about the characteristics of the matrix and the nanocomposites and the lasing effect. A two-photon excitation phenomenon has been observed. PACS 81.05.Zx; 78.45.+h; 78.55.-m; 78.30.Fs; 72.80.Tm; 61.43.Gt; 61.46.+w; 61.66.Fn  相似文献   

7.
ZnO films with strong c-axis-preferred orientation have been prepared by a single source chemical vapor deposition technique using zinc acetate as source material at the growth temperature of 230 °C. The strong UV and blue emissions were observed in the photoluminescence spectra of as-grown films. A small quantity of residual zinc acetate was reserved on the surface of as-grown ZnO films and the emission mechanism of blue luminescence was nearly related to the CH3COO- of unidentate type. The blue emission disappeared and the green emission appeared after annealing treatment. The green emission is related to the singly ionized oxygen vacancies.  相似文献   

8.
The presence of surfactants (Hexamine, tetraethylammonium bromide (TEAB), cetyltrimethylammonium bromide (CTAB), tetraoctylammonium bromide (TOAB) and PVP) on the surface of zinc oxide (ZnO) nanoparticles resulted variation in their optical properties. The optical properties of each surfactant-capped zinc oxide nanoparticles were investigated using UV-visible absorption and fluorescence techniques. The particle size of these nanoparticles were calculated from their absorption edge, and found to be in the quantum confinement range. The absorption spectra and fluorescent emission spectra showed a significant blue shift compared to that of the bulk zinc oxide. Large reduction in the intensity of visible emission of zinc oxide/surfactant was observed and these emissions were vanished more quickly, with the decrease in excitation energy, for the smaller nanoparticles. Out of the four surfactants (other than PVP), CTAB-capped zinc oxide has smallest particle size of 2.4 nm, as calculated from the absorption spectrum. Thus the presence of surfactant on the surface of zinc oxide plays a significant role in reducing defect emissions. Furthermore, ZnO/PVP nanoparticles showed no separate UV emission peak; however, the excitonic UV emission and the visible emission at 420 nm overlap to form a single broad band around 420 nm.  相似文献   

9.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

10.
Zinc oxide (ZnO) and Er-doped zinc oxide (ZnO:Er) thin films were formed by pulsed laser deposition, and characterized by photoluminescence (PL) and X-ray diffraction (XRD) in order to clarify the 1.54 μm emission mechanism in the ZnO:Er films. Er ions were excited indirectly by the 325 nm line of a He-Cd laser, and the comparison of the ultraviolet to infrared PL data of ZnO and ZnO:Er films showed that the 1.54 μm emission of Er3+ in ZnO:Er film appears at the expense of the band edge emission and the defect emission of ZnO. The crystallinity of the films was varied with the substrate temperature and post-annealing, and it was found that the intensity of the 1.54 μm emission is strongly related with the crystallinity of the films. There are three processes leading to the 1.54 μm emission; absorption of excitation energy by the ZnO host, energy transfer from ZnO to Er ions, and radiative relaxation inside Er ions, and it is suggested that the crystallinity plays an important role in the first two processes.  相似文献   

11.
The photoluminescence (PL) and transmittance characteristics of the zinc oxide embedded into voids of FCC sub-micron packed silicon dioxide spheres by using technologically simple and inexpensive spray pyrolysis are reported. The uniform formation of ZnO nanocrystalline particles inside of the porous opal takes place after deposition in aqueous solution with zinc nitrite hexahydride precursor followed by thermal annealing. The decrease of green PL is observed due to the inhibition of spontaneous emission through oxygen vacancies in ZnO. The strong red shift of the transmittance characteristics signifies the essential filling of voids in the opal matrix.  相似文献   

12.
The photoluminescence (PL) properties of high quality ZnO thin films grown on Si (1 0 0) substrates using spin coating technique are investigated as a function of temperature in the range 10-300 K. The PL spectra shows dominant donor bound excitonic emission along with free exciton related emission in the UV region. The corresponding activation energy of thermal quenching is found to be . The parameters that describe the temperature dependent red shift of the band-edge transition energy are evaluated using different models. The broadening of the PL peak due to increase in temperature is mainly attributed to the exciton-LO phonon coupling.  相似文献   

13.
CdS nanocrystallites formed in ordered fatty acid LB multilayers exhibited strong surface states emission ∼550 nm and weak excitonic emission ∼400 nm. Treatment with aqueous CdCl2 resulted in the suppression of surface states emission and enhancement of the blue excitonic emission. Subsequent annealing in air at 200°C caused an order of magnitude enhancement of excitonic emission. The growth of nanocrystallites during annealing as seen from the red-shift of excitonic absorption and emission is suppressed by the CdCl2 treatment. The hindered growth of nanocrystallites, the significant enhancement of excitonic emission from CdS, and the suppression of surface states emission are attributed to surface passivation of CdS nanocrystallites by surface oxide formation.  相似文献   

14.
Nanoparticles of zinc oxide (ZnO), europium oxide (Eu2O3) and their nanocomposite system {(ZnO)0.55(Eu2O3)0.45} have been prepared by pyrophoric reaction and chemical co-precipitation methods. The precursor materials used for the synthesis were Zn(NO3)2·6H2O and bulk Eu2O3. For nanocrystallization, the as-prepared samples were annealed at 500 and 600 °C for 6 h. The X-ray diffractograms (XRD) confirmed the formation of desired phases of the nanoparticles of ZnO, Eu2O3 and nanocomposite of {(ZnO)0.55 (Eu2O3)0.45}. Particle sizes of all the samples have been estimated from the width of the XRD peaks using the Debye-Scherrer equation. Particle sizes, crystallographic phases, etc. extracted from the high resolution transmission electron microscopy of a few selected samples are in agreement with those obtained from the XRD. Field emission scanning electron microscopy showed that ZnO nanoparticles are more-or-less spherical in shape. Average magnetic susceptibilities of all the annealed samples measured in the temperature range of 300-14 K indicate that all the samples including the zinc oxide, which is normally diamagnetic in the bulk state, are paramagnetic and the data are tried to analyze by the Curie-Weiss law. Photo-luminescence data recorded at room temperature of all the samples indicate that the optical property of the ZnO nanoparticles are not affected by Eu2O3 nanoparticles in the nanocomposite system though its bulk magnetization is substantially enhanced by incorporating the Eu2O3 nanoparticles.  相似文献   

15.
ZnO nanorods, nanoneedles, nanoparticles, and nanoballs were synthesized on fused quartz substrates upon irradiation of a droplet of methanolic zinc acetate dihydrate solution by an infrared (IR) continuous wave CO2 laser for a few seconds. The addition of monoethanolamine and water to the solution improved the alignment of the nanorods and had a significant effect on the volume and morphology of the deposits. An increase of the zinc acetate concentration was found to lead to an increase of the thickness and area covered by the initial ZnO seed layer on which the nanostructures grew. By investigating the crystal structure of the deposits using X-ray and electron diffraction, we were able to show that the nanorods grow along the c axis with a high crystalline quality. Raman and photoluminescence spectroscopy confirmed the high quality of the grown ZnO nanostructures. As a matter of fact, their photoluminescence spectra are dominated by an intense UV emission around 390 nm.  相似文献   

16.
We have studied luminescence enhancement of zinc oxide (ZnO) nanoparticles with the average size of 30 nm on several metal surfaces at low temperatures. Bandedge luminescence originated from bound exciton (BE) annihilation is observed at 3.360 eV, and strongly depends on the kind and surface roughness of metal. The luminescence intensity is about 10 times larger for Ag surface than that for quartz surface. Furthermore, the luminescence increases remarkably when the roughness of Ag surface is almost the same as the particle size. The intensity ratio of the fast decay component to the slow one decreases for Ag surface compared with quartz. These results suggest that the luminescence enhancement is partially attributed to suppressing of the nonradiative recombination process in ZnO nanoparticles on metal surface.  相似文献   

17.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

18.
Optical and magneto-optical properties of three-dimensional magnetic photonic crystals, based on magnetite Fe3O4 embedded into an opal film matrix, are investigated in both transmission and reflection. A strong enhancement of the polar Kerr effect and a modification of the Faraday effect have been found near the photonic band-gap of about 1.8 eV. Unusual changes of hysteresis curves and their dependence on photon energy have been revealed in the spectral region where the magneto-optical effect reverses its sign. This phenomenon has been explained by two types of magnetite particles inside the opal matrix having different coercive fields and spectral behaviour.  相似文献   

19.
The influence of surface effects on the temperature dependent photoluminescence (PL) spectra from individual ZnO nanowires has been studied. It is found that the surface effects of the nanowire are very important in both ultraviolet (UV) and visible emission. We propose a new luminescence mechanism based on the recombination related to oxygen vacancies to explain the temperature dependent visible emission, which is significantly influenced by the carrier depletion and band bending caused by surface effects. In addition, the observed attenuation of UV emission with increasing temperature is ascribed to the decreasing depletion region and the increasing surface states related nonradiative recombination.  相似文献   

20.
ZnO/ZnGa2O4 composite layers were synthesized by simple thermal oxidation of ZnS substrates with gallium in the air. The continuous-wave and time-resolved photoluminescence measurements for the composites were performed at room temperature. It is found that the visible deep level emission from ZnO in ZnO/ZnGa2O4 composite layer was almost suppressed. In addition, the UV emission with long lifetime was also observed in comparison with that of pure ZnO layer without ZnGa2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号