首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
For the isocratic ion chromatography (IC) separation of low-molecular-mass organic acids and inorganic anions three different anion-exchange columns were studied: IonPac AS14 (9 μm particle size), Allsep A-2 (7 μm particle size), and IC SI-50 4E (5 μm particle size). A complete baseline separation for all analyzed anions (i.e., F, acetate, formate, Cl, NO2, Br, NO3, HPO42− and SO42−) in one analytical cycle of shorter than 17 min was achieved on the IC SI-50 4E column, using an eluent mixture of 3.2 mM Na2CO3 and 1.0 mM NaHCO3 with a flow rate of 1.0 mL min−1. On the IonPac AS14 column, it was possible to separate acetate from inorganic anions in one run (i.e., less than 9 min), but not formate, under the following conditions: 3.5 mM Na2CO3 plus 1.0 mM NaHCO3 with a flow rate of 1.2 mL min−1. Therefore, it was necessary to adapt a second run with a 2.0 mM Na2B4O7 solution as an eluent under a flow rate of 0.8 mL min−1 for the separation of organic ions, which considerably enlarged the analysis time. For the Allsep A-2 column, using an eluent mixture of 1.2 mM Na2CO3 plus 1.5 mM NaHCO3 with a flow rate of 1.6 mL min−1, it was possible to separate almost all anions in one run within 25 min, except the fluoride-acetate critical pair. A Certified Multianion Standard Solution PRIMUS for IC was used for the validation of the analytical methods. The lowest RSDs (less than 1%) and the best LODs (0.02, 0.2, 0.16, 0.11, 0.06, 0.05, 0.04, 0.14 and 0.09 mg L−1 for F, Ac, For, Cl, NO2, Br, NO3, HPO42− and SO42−, respectively) were achieved using the IC SI-50 4E column. This column was applied for the separation of concerned ions in environmental precipitation samples such as snow, hail and rainwater.  相似文献   

2.
In this paper, we describe a validation procedure for chemical fractionation analysis of elements (Al, As, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sb, Si, Sr, Ti and V) and soluble ions (Cl, NO3, SO42−, Na+, NH4+, Mg2+, Ca2+) in suspended particulate matter (PM). The procedure applies three distinct measurement techniques (XRF, IC and ICP-OES) to the analysis of individual samples. The techniques used generate different outputs at different stages in the procedure. This makes it possible to identify the contributions of specific parameters to measurement uncertainty. On this basis, we propose a scheme for controlling the analytical quality of data from individual samples in which inter-technique comparisons is used in the same way many analytical methods use surrogates. We apply this scheme to about 310 samples of PM10 and PM2.5 identifying and assessing the main factors contributing to measurement uncertainty. This procedure successfully resolved a number of difficulties frequently encountered during the analysis of PM, including lack of appropriate reference materials and the low reliability of alternative techniques of quality control. The results demonstrate the critical importance of sample treatment prior to destructive analysis by IC and ICP.  相似文献   

3.
A comprehensive thermodynamic model based on the electrolyte NRTL (eNRTL) activity coefficient equation is developed for the NaCl + H2O binary, the Na2SO4 + H2O binary and the NaCl + Na2SO4 + H2O ternary. The NRTL binary parameters for pairs H2O-(Na+, Cl) and H2O-(Na+, SO42−), and the aqueous phase infinite dilution heat capacity parameters for ions Cl and SO42− are regressed from fitting experimental data on mean ionic activity coefficient, heat capacity, liquid enthalpy and dissolution enthalpy for the NaCl + H2O binary and the Na2SO4 + H2O binary with electrolyte concentrations up to saturation and temperature up to 473.15 K. The Gibbs energy of formation, enthalpy of formation and heat capacity parameters for solids NaCl(s), NaCl·2H2O(s), Na2SO4(s) and Na2SO4·10H2O(s) are obtained by fitting experimental data on solubilities of NaCl and Na2SO4 in water. The NRTL binary parameters for the (Na+, Cl)-(Na+, SO42−) pair are regressed from fitting experimental data on dissolution enthalpies and solubilities for the NaCl + Na2SO4 + H2O ternary.  相似文献   

4.
A method was developed for the quantitative determination of cations and anions in Antarctic ice cores at μg L−1 and sub-μg L−1 levels by ion chromatography (IC), after ultra-clean decontamination procedures. Strict manipulation and decontamination procedures were used in sub-sampling, in order to minimise sample contamination. Na+, NH4+, K+, Mg2+ and Ca2+ were determined by 12-min isocratic elution (H2SO4 eluent). Contemporaneously, in a parallel device, F, MSA (methanesulfonic acid), Cl, NO3 and SO42− were analysed in a single 12-min run with multiple-step elution using Na2CO3/NaHCO3 as eluent. Melted ice samples were pumped from their still-closed containers (polystyrene accuvettes with polyethylene caps), shared between the two ion chromatographic systems, online filtered (0.45 μm Teflon membrane) and pre-concentrated (anions and cations pre-concentration columns) using a flow analysis system, thus avoiding uptake of contaminants from the laboratory atmosphere. Sensitivity, linear range, reproducibility and detection limit were evaluated for each chemical species. Anion or cation detection limits ranged from 0.01 to 0.15 μg L−1 by using a relatively small sample volume (1.5 mL). Such values are significantly lower than those reported in literature for almost all the components. These methods were successfully applied to the analysis of cations and anions at trace levels in the Dome C ice core. The composition of the atmospheric aerosol for the last 850 kyr was reconstructed by high-resolution continuous chemical stratigraphies. Concentration trends in the last nine glacial-interglacial climatic cycles were shown and briefly discussed.  相似文献   

5.
From the viewpoint of a graphite carbon column with excellent durability, it was applied to the ion chromatography (IC) of several organic acids. The carbon column was permanently coated with the cetyltrimethylammonium (CTMA) ion, and the elution behaviors of several organic acids (acetic acid, lactic acid, succinic acid, malic acid, tartaric acid, citric acid) and inorganic anions (Cl, NO2, NO3, SO42−) were examined according to a non-suppressed IC coupled with conductivity detector, when an ion-exchange ability was given to the graphite carbon column. When salicylic acid and sodium salicylate were used as a mobile phase, each organic acid are analyzed approximately 10 min. But the separation of malic acid, chloride and nitrite was difficult. When benzoic acid and 2-amino-2-hydroxymethyl-1,3-puropanediol (tris aminomethane) were used as a mobile phase, tartaric acid and citric acid, etc. with large valency showed tendency to which the width of each peaks extended and retention time increased. However, it was possible to separate excellently for the analytes detected within 10 min. The developed method was then applied to the determination of organic acids in several food samples.  相似文献   

6.
Serge Zhuiykov  Eugene Kats 《Talanta》2010,82(2):502-5442
A Cu2O-doped RuO2 sensing electrode (SE) for potentiometric detection of dissolved oxygen (DO) was prepared and its structure and electrochemical properties were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS) and energy-dispersive spectroscopy (EDS) techniques. Cu2O-RuO2-SE displayed a linear DO response from 0.5 to 8.0 ppm (log[O2], −4.73 to −3.59) within a temperature range of 9-30 °C. The maximum sensitivity of −47.4 mV/decade at 7.27 pH was achieved at 10 mol% Cu2O. Experimental evaluation of the Cu2O-doped RuO2-SE demonstrated that the doping of RuO2 not only improves its structure but also enhances both sensor's selectivity and antifouling properties. Selectivity measurements revealed that 10 mol% Cu2O-doped RuO2-SE is insensitive to the presence of Na+, Mg2+, K+, Ca2+, NO3, PO42− and SO42− ions in the solution in the concentration range of 10−7-10−1 mol/l.  相似文献   

7.
The paper presents a new method for a simultaneous determination of inorganic nitrogen species in the oxidized (NO2, NO3) and reduced (NH4+) form in rain water samples. The method is based on a system of nitrogen species separation employing ion exchange and diode-array detection. The ions are separated in a strong ion-exchanger, nitrites and nitrates are determined directly at 208 and 205 nm, respectively, while the ammonium ions are determined in the column hold-up time after a post-column derivatization by the Nessler reagent, at 425 nm. The use of a diode-array detector permits a simultaneous identification of the inorganic nitrogen species in 8 min. The detection limits obtained are: NO2, 0.1 mg L−1; NO3, 0.05 mg L−1; NH4+, 1 mg L−1. The method proposed has been successfully used for speciation analysis of inorganic nitrogen in precipitation.  相似文献   

8.
A simple and rapid microwave-assisted extraction (MAE) technique has been developed for the determination of water-soluble inorganic species (cations: Na+, NH4+, K+, Ca2+ and Mg2+ and anions: F, Cl, NO3, PO43– and SO42–) in airborne particulate matter. The analytes were extracted under different treatment conditions such as microwave power and extraction time. They were quantified using ion chromatography. The observed concentrations and recovery yields obtained under different conditions were compared. The results of a comparison between this MAE and sonication using NIST SRM 1648 are also given in this paper. The optimized MAE technique gave results in good agreement with the values obtained by the sonication. For some ions, for example Mg2+ and K+, recovery was low with both techniques. The results demonstrated that the optimized MAE is fast and efficient compared with conventional ultrasonic extraction. Urban airborne particles were collected and subjected to the MAE followed by the IC analysis to determine the relative proportions of different water-soluble inorganic species. These results are briefly discussed.  相似文献   

9.
A gas chromatography–tandem mass spectrometric (GC–MS/MS) method has been established for the determination of cyanide in surface water. This method is based on the derivatization of cyanide with 2-(dimethylamino)ethanethiol in surface water. The following optimum reaction conditions were established: reagent dosage, 0.7 g L−1 of 2-(dimethylamino)ethanethiol; pH 6; reaction carried out for 20 min at 60 °C. The organic derivative was extracted with 3 mL of ethyl acetate, and then measured by using GC–MS/MS. Under the established conditions, the detection and quantification limits were 0.02 μg L−1 and 0.07 μg L−1 in 10-mL of surface water, respectively. The calibration curve had a linear relationship relationship with y = 0.7140x + 0.1997 and r2 = 0.9963 (for a working range of 0.07–10 μg L−1) and the accuracy was in a range of 98–102%; the precision of the assay was less than 7% in surface water. The common ions Cl, F, Br, NO3, SO42−, PO43−, K+, Na+, NH4+, Ca2+, Mg2+, Ba2+, Mn4+, Mn2+, Fe3+, Fe2+ and sea water did not interfere in cyanide detection, even when present in 1000-fold excess over the species. Cyanide was detected in a concentration range of 0.07–0.11 μg L−1 in 6 of 10 surface water samples.  相似文献   

10.
In the time period from June 2005 to May 2006 in 42 sampling campaigns 84 filter samples of airborne particulate matter, coarse (PM10–2.5) and fine (PM2.5), were collected using a Gent stacked filter unit in the coastal industrial area of Aspropyrgos in Attica, Greece. The average PM10 (PM10–2.5 + PM2.5) concentration was found to be 66 μg · m−3, exceeding more than 1.6 times the annual limit of 40 μg · m−3. The samples were analysed for Cl, NO3 , SO4 2−, Ca2+, Mg2+, Na+, K+ and NH4 + using ion chromatography. The data were compared with results obtained with other spectrometric methods, such as inductively coupled plasma-atomic emission spectrometry, atomic absorption spectrometry, energy dispersive X-ray fluorescence and reflectometry. The determined average ionic content comprised about 44% of the PM10 mass. The ionic composition, as well as the possible matrix compounds in both fractions were evaluated by dividing the sampling period into summer and winter season. In the PM10–2.5/PM2.5 fraction in summer time the concentrations of Ca2+, Mg2+ and NO3 were enriched in the coarse fraction. In winter time all species were enriched in the coarse fraction, especially Ca2+, Cl and NO3 . NH4 + was constantly higher in the fine fraction in summer as well as in winter time. Factor analysis was applied to obtain correlations between cations and anions leading to matrix compounds in both fractions. From the evaluation of the results obtained, some of the local air pollution sources could be identified. Correspondence: Klaus-Michael Ochsenkühn, Laboratory for Trace Element Studies, Institute of Physical Chemistry, NCSR “Demokritos”, Aghia Paraskevi 15310, Athens, Greece  相似文献   

11.
Iridium oxide nanoparticles are grown on a glassy carbon electrode by electrodepositing method. The electrochemical behavior and electrocatalytic activity of modified electrode towards reduction of iodate and periodate are studied. The reductions of both ions occur at the unusual positive peak potential of 0.7 V vs. reference electrode. The modified electrode is employed successfully for iodate and periodates detection using cyclic voltammetry, hydrodynamic amperometry and flow injection analysis (FIA). In the performed experiments, flow injection amperometric determination of iodate and periodate yielded calibration curves with the following characteristics: linear dynamic range up to 100 and 80 μM, sensitivity of 140.9 and 150.6 nA μM−1 and detection limits of 5 and 36 nM, respectively. The repeatability of the modified electrode for 21 injections of 1.5 μM of iodate solution is 1.5%. The interference effects of NO2, NO3, ClO3, BrO3, ClO4, SO42−, Cu2+, Zn2+, Mn2+, Mg2+, Cd2+, Ca2+, Na+, K+, NH4+ and K+, CH3COO and glucose were negligible at the concentration ratio of more than 1000. The obtained attractive analytical performance together with high selectivity and simplicity of the proposed method provide an effective and e novel modified electrode to develop an iodate and periodate sensor. Sensitivity, selectivity, the liner concentration range and the detection limit of the developed sensor are all much better than all known similar sensors in the literature for iodate and periodate determination.  相似文献   

12.
A robotic method has been established for the determination of bromate in sea water and drinking deep-sea water. Bromate in water was converted into volatile derivative, which was measured with headspace solid-phase micro extraction and gas chromatography–mass spectrometry (HS-SPME GC–MS). Derivatization reagent and the HS-SPME parameters (selection of fibre, extraction/derivatization temperature, heating time and; the morality of HCl) were optimized and selected. Under the established conditions, the detection and the quantification limits were 0.016 μg L−1 and 0.051 μg L−1, respectively, and the intra- and inter-day relative standard deviation was less than 7% at concentrations of 1.0 and 10.0 μg L−1. The calibration curve showed good linearity with r2 = 0.9998. The common ions Cl, NO3, SO42−, HPO42−, H2PO4, K+, Na+, NH4+, Ca2+, Mg2+, Ba2+, Mn4+, Mn2+, Fe3+ and Fe2+ did not interfere even when present in 1000-fold excess over the active species. The method was successfully applied to the determination of bromate in sea water and drinking deep-sea water.  相似文献   

13.
Enass M. Ghoneim 《Talanta》2010,82(2):646-652
A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L−1 acetate buffer (pH 5) containing 50 μmol L−1 of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0 V (vs. Ag/AgCl/3 M KCl). Insignificant interference from various cations (K+, Na+, Mg2+, Ca2+, Al3+, Bi3+, Sb3+, Se4+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, V5+, Ti4+ and NH4+), anions (HCO3, Cl, NO3−, SO42− and PO43−) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 μg L−1 and limits of quantitation of 0.22, 0.36 and 0.31 μg L−1 Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples.  相似文献   

14.
The equilibrium molalities In3+ in {In2(SO4)3 + Na2SO4 + HDEHMTPCA + n-C8H18 + water} were measured at ionic strength from (0.1 to 2.0) mol · kg−1 containing Na2SO4 as supporting electrolyte in aqueous phase and at constant molality extractant at temperatures from (278.15 to 303.15) K in organic phase. The standard extraction constants K0 at various temperatures were obtained by methods of extrapolation and polynomial approximation. Thermodynamic quantities for the extraction process were calculated.  相似文献   

15.
The elemental composition of water soluble and acid soluble size-fractionated airborne particulate matter (APM) was investigated. PM2.5 and PM2.5-10 samples were collected every three days from October 2006 to October 2007 in Buenos Aires, Argentina. The collection was performed on Nucleopore® filters using a GENT sampler. Samples containing fine and coarse particles were subjected to an aqueous leaching to obtain information on the dissolution behaviors of ions, metal and metalloids. Key elements namely, Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Se, Ti and Zn were determined in each fraction by inductively coupled plasma optical emission spectrometry (ICP OES). In the aqueous fractions, Cl, SO42−, Na+ and NH4+ were determined by high performance liquid chromatography (HPLC). A (6:2:5) mixture of nitric, hydrochloric and perchloric acids was used for leaching metals from the residual filters. For validation of the extraction procedure, the ICP OES measurements the Standard Reference Material NIST 1648 (Urban particulate matter) was subjected to the same analytical procedure that the samples loaded with APM. Total analyte concentration varied from 333.2 μg g− 1 (equivalent to 3.7 ng m− 3) for Ti to 692 mg g− 1 (equivalent to 2.47 μg m− 3) for Ca.  相似文献   

16.
Basic operation principles of a lightweight, low power, low cost, portable ion chromatograph utilizing open tubular ion chromatography in capillary columns coated with multi-layer polymeric stationary phases are demonstrated. A minimalistic configuration of a portable IC instrument was developed that does not require any chromatographic eluent delivery system, nor sample injection device as it uses gravity-based eluent flow and hydrodynamic sample injection adopted from capillary electrophoresis. As a detection device, an inexpensive commercially available capacitance sensor is used that has been shown to be a suitable substitute for contactless conductivity detection in capillary separation systems. The built-in temperature sensor allows for baseline drift correction typically encountered in conductivity/capacitance measurements without thermostating device. The whole instrument does not require any power supply for its operation, except the detection and data acquisition part that is provided by a USB port of a Netbook computer. It is extremely lightweight, its total weight including the Netbook computer is less than 2.5 kg and it can be continuously operated for more than 8 h. Several parameters of the instrument, such as detection cell design, eluent delivery systems and data treatment were optimized as well as the composition of eluent for non-suppressed ion chromatographic analysis of common inorganic cations (Na+, NH4+, K+, Cs+, Ca2+, Mg2+, transition metals). Low conductivity eluents based on weakly complexing organic acids such as tartaric, oxalic or pyridine-2,6-dicarboxylic acids were used with contactless capacitance detection for simultaneous separation of mono- and divalent cations. Separation of Na+ and NH4+ cations was optimized by addition of 18-crown-6 to the eluent. The best separation of 6 metal cations commonly present in various environmental samples was accomplished in less than 30 min using a 1.75 mM pyridine-2,6-dicarboxylic acid and 3 mM 18-crown-6 eluent with excellent repeatability (below 2%) and detection limits in the low micromolar range. The analysis of field samples is demonstrated; the concentrations of common inorganic cations in river water, mineral water and snow samples were determined.  相似文献   

17.
Somer G  Sezer S  Doğan M  Kalaycı S  Sendil O 《Talanta》2011,85(3):1461-1465
A new borate ion selective electrode using solid salts of Ag3BO3, Ag2S and Cu2S has been developed. Detailed information is provided concerning the composition, working pH and conditioning of the electrode. An analytically useful potential change occurred from 1 × 10−6 to 1 × 10−1 M borate ion. The slope of the linear portion was 31 ± 2 mV/10-fold changes in borate concentration. The measurements were made at constant ionic strength (0.1 M NaNO3) and at room temperature. The effect of Cl, Br, NO3, SO=4, H2PO4 anions and K+, Na+, Cu2+, Ag+, Ca2+ cations on borate response is evaluated and it was found that only Ag+ had a small interference effect. The lifetime of the electrode was more than two years, when used at least 4-5 times a day, and the response time was about 20-30 s. Borate content in waste water of borax factory, tap water of a town situated near to the borax factory and city tap water far from these mines were also determined. The validation was made with differential pulse polarography for the same water sample, and high consistency was obtained.  相似文献   

18.
The optimisation of a micro-analytical two-step sequential leaching procedure for the determination of non-volatile ions (NO3, SO42−, Cl, Na+, Mg2+, NH4+ and Ca2+) and of 17 elements (Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, S, Se, V, Zn, Sb, Si and Ti) in two fractions—extract and residue—on the same sample of air particulate matter is described. The two-step method was tested on the SRM NIST 1648 for equivalence with two reference methods, the EMEP procedure for ions extraction and the EN 12341 standard for the elemental determination of the PM10 and is suitable for application to small sample amounts (less than 1 mg of particulate matter is needed), i.e. those collected by daily low volume filter-sampling. Performance times of the procedure were optimised to meet the target of routine application for large scale monitoring samples. A single ultrasonic-assisted extraction of air particulate matter is performed in 0.01 M acetate buffer at pH 4.5, followed by IC ions analysis and ICP-OES elemental analysis of the extract and by ICP-OES elemental analysis of the mineralized residue after dissolution by microwave-assisted digestion with a HNO3/H2O2 mixture. Using a pH buffered extracting solvent was preferred to water or diluted acid solutions to improve the reproducibility of metals extraction with respect to existing leaching methods; the influence of pH, nature and concentration of the buffer solution and extraction time on analytes concentration in the extract is discussed. Values of ions extraction and elements recoveries resulted fairly equivalent with those obtained by the reference methods. The study was also extended to some non-certified elements (Mg, S, Sb, Si and Ti) for their environmental significance. Elements recoveries were obtained as sum of the extract and residue fractions and were comparable with those obtained by direct dissolution. Standard deviations were within 10% for almost all detected ions and elements.  相似文献   

19.
Polyelectrolyte multilayers deposited on the wall of fused silica capillaries were used as stationary phases in open tubular ion chromatography. The multilayers were formed by flushing the capillaries with solutions of polyanions and polycations such as polydiallyldimethylammonium chloride and dextran sulphate. Columns with several bi-layers were constructed and used in low pressure non-suppressed open tubular ion chromatography of common inorganic anions (F, Cl, NO3) and cations (Li+, Na+, NH4+, K+, Cs+) with contactless conductometric detection. Using sodium benzoate and tartaric acid eluents the separations were typically achieved in less than 35 min with separation efficiencies between 2000 and 9000 theoretical plates. A bi-functional column was prepared that contains both anionic and cationic functional groups and was used for simultaneous separation of anions and cations.  相似文献   

20.
The effect of various chemicals on the cloud point (CP) of nonionic surfactant Triton X-405 (TX-405) in aqueous solutions has been investigated. In the measurements of cloud point temperatures, UV–visible spectrophotometer was used instead of visual observation. The values of CP for Triton X-405 could not be measured directly because TX-405 had an average number of oxyethylene units per molecule, p ≈ 35 and a CP > 100 °C. To avoid additional measurements under pressure, TX-405 had their CP lowered below the normal boiling point of their solutions by adding the salting-out, CP-lowering salts at various concentrations, measuring the depressed CP values and extrapolating them to zero salt concentration. The CP values decrease linearly with increasing concentration of salts at studied concentrations. The results showed that the addition of the simple salts and nonionic surfactant Triton X-114 (TX-114) which are infinitely miscible with water decreased the cloud point of the TX-405. In this study, the real CP values of TX-405 which are merely listed as >100 °C in the literature was found as 116 ± 1 °C in various samples. In the lyotropic series, it is expected that the effect of F > Cl > Br will be on the decrease in CP, because the ionic sizes increase along the group consequently decreasing the formal charge density on anion, thus lowering the attraction on anion and thereby lowering the attraction of water. The order of CP depression for the other anions is as follows: PO43− > SO42− > NO3 > Br. This means that electrolyte containing trivalent anions is more effective at salting-out the PEO chain than those containing divalent anions and monovalent anions. Cations effectiveness is present in the following order for change: Na+ > K+ > NH4+ because of their effect on water structure and their hydrophilicity. Overall the electrolytes and nonelectrolytes have a large amount of effect on CP of nonionic surfactant, because of their effect on water structure and their hydrophilicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号