首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytical procedure for the determination of toxicologically relevant arsenic (the sum of arsenite, arsenate, monomethylarsonate and dimethylarsinate) in urine by flow injection hydride generation and collection of generated inorganic and methylated hydrides on an integrated platform of a transverse-heated graphite atomizer for electrothermal atomic absorption spectrometric determination (ETAAS) is elaborated. Platforms are pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which serve both as an efficient hydride sequestration medium and permanent chemical modifier. Arsine, monomethylarsine and dimethylarsine are generated from diluted urine samples (10–25-fold) in the presence of 50 mmol L−1 hydrochloric acid and 70 mmol L−1 l-cysteine. Collection, pyrolysis and atomization temperatures are 450, 500, 2100 and 2150 °C, respectively. The characteristic mass, characteristic concentration and limit of detection (3σ) are 39 pg, 0.078 μg L−1 and 0.038 μg L−1 As, respectively. The limits of detection in urine are ca. 0.4 and 1 μg L−1 with 10- and 25-fold dilutions. The sample throughput rate is 25 h−1. Applications to several urine CRMs are given.  相似文献   

2.
A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L−1 tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V) + MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g−1 expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given.  相似文献   

3.
In this work, the determination of total As in seawater by hydride generation atomic fluorescence spectrometry was studied. The influence of the chemical, flow and instrumental parameters were investigated and optimized. The pre-reduction of As(V) to As(III) was performed using KI plus ascorbic acid in 3.5 mol L− 1 HCl medium. No multiplicative interference was present and external aqueous calibration could be used. The limit of detection was 36 ng L− 1, while the repeatability was 2% (n = 10), at a 500 ng L− 1 concentration level. The sample throughput was 15 h− 1 if triplicate measurements were made. The accuracy was assessed by the analysis of a seawater certified reference material and excellent agreement between the obtained and certified values was verified. The procedure was used for the analysis of seawater offshore samples collected at the Brazilian coast and results ranging from 860 to 1200 ng L− 1 were found.  相似文献   

4.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

5.
A method using bi-directional electrostacking (BDES) in a flow system is presented for As preconcentration and speciation analysis. Some parameters such as electrostacking time and applied voltage, support buffers and their concentrations were investigated. Boric acid plus sodium hydroxide at 0.1 mol/l concentration was selected as support buffer to improve the pre-concentration factor (PF) for As(V). An analytical range from 2.0 to 50.0 μg l−1, and 0.35 μg l−1 as limit of detection, when applied 750 V for 20 min, were achieved. Under these conditions, a pre-concentration factor of 4.8 was obtained. The proposed method was applied to determine As(V) in mineral water and natural water samples (river, fountain and gold mine) from Ouro Preto city. Recoveries from 93.5 to 106.4% were achieved at 10 μg l−1 added As level (R.S.D.s between 3 and 7%). Potassium permanganate (10 mg l−1) was used for oxidising As species in order to determine total As, being established the concentration of As(III) from the difference between total As and As(V).  相似文献   

6.
A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG–AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l−1 H2SO4. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml−1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml−1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml−1 As(III) and 2.5% for 20 ng ml−1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.  相似文献   

7.
The aim of this study was to develop a method for the characterization of internal exposure to arsenic, which is thought to play a role in the development of a kidney disease, known as Balkan Endemic Nephropathy, typical for a district in Bulgaria, and to investigate whether the As body burden differs in the offspring versus control individuals. For this case study, an analytical procedure for the determination of toxicologically relevant arsenic (the sum of arsenite, arsenate, monomethylarsonate, and dimethylarsinate) in urine by batch-type hydride generation atomic absorption spectrometry was developed. Optimization experiments for levelling off the sensitivity of inorganic arsenic and its mono- and dimethylated species in dilute HCl–L-cysteine medium were performed. The limit of detection for hydride forming arsenic fraction was 0.5?ng As, i.e. 0.25?µg?L?1 in 10?mL of 1?+?4 v/v diluted urine. The relative standard deviation was typically 1.5–1.8% for aqueous solution and 2–6% for urine samples at 1.0?µg?L?1 As. The sample throughput rate was 15?h?1. No statistical correlation and cross-correlation between individuals case-control and sex at 95% confidence were found: controls (n?=?99), mean 3.5?±?2.1 (SD), range 0.9–10.4, median 3.0?µg?L?1 As and cases (n?=?102), mean 3.6?±?2.2 (SD), range 0.5–11.0, median 3.2?µg?L?1 As. On the basis of this study, arsenic can be excluded as a factor involved in BEN development.  相似文献   

8.
采用三毛细管微型在线氢化发生技术和装置, 建立了氢化物发生-电热石英管原子吸收法测定纺织品中痕量As、 Sb的分析方法. 研究了共存离子对As、 Sb检测的干扰及消除方法. 结果表明: 该方法除Co、 Sn对As和Ni对Sb有干扰外, 其它干扰元素允许量都较大. 采用酒石酸和KI混合掩蔽剂可抑制Co、 Sn对As和Ni对 Sb的干扰. As和Sb的检出限分别为0.7和0.4 ng/L, 已用于测定纺织品中痕量As和Sb的分析.  相似文献   

9.
Most comparative studies on the efficiency of chemical modifiers have been conducted in aqueous media. In the present work, we proposed a detailed study of the use of different chemical modifiers for direct determination of arsenic in complex organic matrices by electrothermal atomic absorption spectrometry (ETAAS). Palladium, rhodium, tungsten, silver, lanthanum and a mixture of palladium and magnesium were tested. The figures of merit used for evaluation and comparison were acquired in the optimal conditions for each modifier, established by multivariate optimization of the main variables based on Doehlert designs. Singular features were observed for the chemical behaviour of some modifiers in organic matrices compared to aqueous media, such as the worse performance of Pd + Mg modifier and no notice of severe tube corrosion from La application. Lanthanum was chosen as the best chemical modifier for the present application, according to predefined criteria. Lanthanum showed the minimum limit of detection, characteristic concentration and blank signal among all tested species and no effect of the concomitants usually present in petrochemical feedstocks. Using a 200 mg L−1 lanthanum solution as a chemical modifier, the average relative standard deviations of 7 and 16% (at 3-15 μg L−1 level) and characteristic concentrations of 0.47 and 0.77 μg L−1 for naphtha and petroleum condensates, respectively, were observed.  相似文献   

10.
The determination of bismuth requires sufficiently sensitive procedures for detection at the μg L−1 level or lower. W-coil was used for on-line trapping of volatile bismuth species using HGAAS (hydride generation atomic absorption spectrometry); atom trapping using a W-coil consists of three steps. Initially BiH3 gas is formed by hydride generation procedure. The analyte species in vapor form are transported through the W-coil trap held at 289 °C where trapping takes place. Following the preconcentration step, the W-coil is heated to 1348 °C; analyte species are released and transported to flame-heated quartz atom cell where the atomic signal is formed. In our study, interferences have been investigated in detail during Bi determination by hydride generation, both with and without trap in the same HGAAS system. Interferent/analyte (mass/mass) ratio was kept at 1, 10 and 100. Experiments were designed for carrier solutions having 1.0 M HNO3. Interferents such as Fe, Mn, Zn, Ni, Cu, As, Se, Cd, Pb, Au, Na, Mg, Ca, chloride, sulfate and phosphate were examined. The calibration plot for an 8.0 mL sampling volume was linear between 0.10 μg L−1 and 10.0 μg L−1 of Bi. The detection limit (3 s/m) was 25 ng L−1. The enhancement factor for the characteristic concentration (Co) was found to be 21 when compared with the regular system without trap, by using peak height values. The validation of the procedure was performed by the analysis of the certified water reference material and the result was found to be in good agreement with the certified values at the 95% confidence level.  相似文献   

11.
Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 μg L−1 with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03–4.00 μg L−1. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.  相似文献   

12.
建立了用阴离子交换树脂分离-氢化物发生原子荧光光谱法测定食品中无机砷、一甲基胂和二甲基胂的方法.分别从样品上样条件及二甲基胂、一甲基胂、 As(Ⅲ)和As(Ⅴ)分离条件进行了优化.研究了树脂处理程序对分离的影响,并探讨了共存离子对测定砷的干扰和消除的方法.对方法的适用范围做了研究.本方法具有操作简便、快速、灵敏度高等优点.检出限(以砷计)分别为: 无机砷0.34 μg/L,一甲基胂0.57 μg/L,二甲基胂0.46 μg/L.  相似文献   

13.
A rapid, high sensitivity method has been developed for the determination of As(III), As(V), Sb(III) and Sb(V) in milk samples by using hydride generation atomic fluorescence spectrometry. The method is based on the leaching of As and Sb from milk through the sonication of samples with aqua regia followed by direct determination of the corresponding hydrides both before and after reduction with KI. It was confirmed by recovery experiments on spiked commercially available samples that neither the reduced nor the oxidized forms of the elements under study or mixtures of the two oxidation states were modified by the room temperature sample treatment with aqua regia. The methodologies developed provided 3σ limit of detection values of 8.1, 10.3, 5.4 and 7.7 ng l−1 for As(III), As(V), Sb(III) and Sb(V) in the diluted samples. Average relative standard deviation values of 5.7, 5.5, 8.2 and 4.7% were found for determination of As(III), As(V), Sb(III) and Sb(V) in commercially available samples of different composition and origin containing from 3.5 to 13.6 ng g−1 total As and from 4.9 to 11.8 ng g−1 total Sb, it being confirmed that As(V) and Sb(V) are the main species present in the samples analyzed (62±5 and 73±5%, respectively). The time required to determine As and Sb species in milk involves 10 min sonication and 30 min prereduction but these steps can be carried out for several sample simultaneously. Additionally the fluorescence measurement step involves less than 20 min for three replicates of all the four measurements required. So, in less than 2 h it is possible to determine the content of As(III), As(V), Sb(III) and Sb(V) in four samples.  相似文献   

14.
A method for the determination of arsenic in slurries of mussel tissue using palladium-magnesium nitrate as modifier was optimized. The slurry was stabilized by a 0.015% (v/v) of Triton X-100. To achieve complete mineralization the slurries were ashed at 480 °C for 10s in an air flow (50 ml/min) and at 1200 °C for 15s in an argon flow (300 ml/min) in the presence of Pd—Mg(NO3)2 as modifier. The optimum atomization temperature was 2200 °C. The precision and accuracy of the method were studied using the Reference Material BCR n ° 278 Mussel Tissue (Mytilus edulis). The detection limit (LOD) of the final slurry solution was 1 g/l of arsenic corresponding to an arsenic level in the mussel of 1.3 g/g, for a 0.5% (m/v) slurry. Results of calibration using aqueous standards and the standard additions method were compared. The method was applied to the determination of arsenic in mussels from the Galician coast. The levels found lie between 2 and 9.3 g/g of arsenic.  相似文献   

15.
A simple and robust on-line sequential insertion system coupled with hydride generation atomic absorption spectrometry (HG-AAS) was developed, for selective As(III) and total inorganic arsenic determination without pre-reduction step. The proposed manifold, which is employing an integrated reaction chamber/gas-liquid separator (RC-GLS), is characterized by the ability of the successful managing of variable sample volumes (up to 25 ml), in order to achieve high sensitivity. Arsine is able to be selectively generated either from inorganic As(III) or from total arsenic, using different concentrations of HCl and NaBH4 solutions. For 8 ml sample volume consumption, the sampling frequency is 40 h−1. The detection limit is cL = 0.1 and 0.06 μg l−1 for As(III) and total arsenic, respectively. The precision (relative standard deviation) at 2.0 μg l−1 (n = 10) level is sr = 2.9 and 3.1% for As(III) and total arsenic, respectively. The performance of the proposed method was evaluated by analyzing the certified reference material NIST CRM 1643d and spiked water samples with various concentration ratios of As(III) to As(V). The method was applied for arsenic speciation in natural waters samples.  相似文献   

16.
Silver nanoparticles (AgNPs) were proposed as a new chemical modifier for the elimination of interferences when determining arsenic and antimony in aqueous NaCl or Na2SO4 solutions and in sea-water by electrothermal atomic absorption spectrometry. For this purpose, the AgNPs were prepared simply by reducing silver nitrate with sodium citrate. The effects of pyrolysis and atomization temperatures and the amounts of interferents and modifiers on the sensitivities of these elements were investigated. In the presence of the proposed modifier, a pyrolysis temperature of at least 1100 °C for arsenic and 900 °C for antimony could be applied without the loss of analytes, and the interferences were greatly reduced to allow for interference-free determination. The detection limits (N = 10, 3σ) for arsenic and antimony were 0.022 ng and 0.046 ng, respectively. AgNPs are cheaper and more available compared to many other modifiers. No background was detected, and the blank values were negligible.  相似文献   

17.
采用HNO3/HClO4(体积比10∶1)消解冶金废水样品,经6mol.L-1 HCl溶液酸化后,加入碘化钾(3%)、抗坏血酸(1%)及硫脲(1%)混合溶液进行还原,用氢化物-原子吸收光谱法(HG-AAS)测定了样品中的As含量.结果表明,该方法的检出限为0.297μg/L,相对标准偏差RSD为5.463%,样品加标回收率为93%~108%;其操作方便、选择性好、灵敏度高、干扰少,适合于复杂废水中微量和痕量As的测定.  相似文献   

18.
A highly sensitive procedure has been developed for total arsenic and antimony determination in milk samples by hydride generation atomic fluorescence spectrometry after microwave-assisted sample digestion. The discrete introduction of 2 ml of digested sample in the automated continuous flow hydride generation system allows us to reduce drastically the sample and HCl consume and to determine several elements from a same sample digestion. The method provides detection limits of 0.006 and 0.003 ng ml−1, a sensitivity of 2390 and 2840 fluorescence units per ng ml−1 for As and Sb respectively, and average relative standard deviation of 2.3% for As and 4.8% for Sb. The analysis of cow milk samples, obtained from the Spanish market evidenced the presence of As at concentration levels from 3.4 to 11.6 ng g−1 and Sb levels from 3.5 to 11.9 ng g−1, thus in a proportion near to 1:1, which is in contrast with the 10:1 natural ratio between As and Sb and could evidence the effect of the introduction of new alloys and polymer materials in the industrial process of milk. The method was validated by the comparison of data found for commercial samples by using the proposed procedure and reference methods based on dry-ashing and AFS, and microwave-assisted digestion and inductively coupled plasma mass spectrometry determination.  相似文献   

19.
A novel method for speciation analysis of inorganic arsenic was developed by on-line hyphenating microchip capillary electrophoresis (chip-CE) with hydride generation atomic fluorescence spectrometry (HG-AFS). Baseline separation of As(III) and As(V) was achieved within 54 s by the chip-CE in a 90 mm long channel at 2500 V using a mixture of 25 mmol l(-1) H3BO3 and 0.4 mmol l(-1) CTAB (pH 8.9) as electrolyte buffer. The precisions (RSD, n=5) ranged from 1.9 to 1.4% for migration time, 2.1 to 2.7% for peak area, and 1.8 to 2.3% for peak height for the two arsenic species at 3.0 mg l(-1) (as As) level. The detection limits (3sigma) for As(III) and As(V) based on peak height measurement were 76 and 112 microg l(-1) (as As), respectively. The recoveries of the spikes (1 mg l(-1) (as As) of As(III) and As(V)) in four locally collected water samples ranged from 93.7 to 106%.  相似文献   

20.
Hydride generation atomic fluorescence spectrometry was for the first time utilized to determine trace toxic element arsenic in the skeleton fossils of four dinosaurs unearthed in Sichuan Province of China. The instrumental limit of detection (LOD) for arsenic was 0.03 μg/L under optimal experimental conditions, which compared favorably to that by ICP-AES and ETAAS. The samples were digested with aqua regia in boiling water bath. The recoveries of standard addition were found to be from 97 to 109%, and the analytical results were found in good agreement with those by ICP-AES. It is a simple, reliable, sensitive yet relatively inexpensive analytical method, compared to ICP-AES, ICP-MS or ETAAS. Interesting analytical results were found that the arsenic concentrations were all abnormally high in the skeleton fossils. The established analytical method and the analytical results may be helpful in revealing the mystery of the mass extinction of the dinosaur fauna. The analytical results, together with other data available to date, supported the argument that the arsenic toxicosis could be a contributing factor for the mass extinction of the dinosaur fauna in Sichuan Province of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号