首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New germanosilicate glasses giving the crystallization of yttrium iron garnet Y3Fe5O12 (YIG) and Bi-doped YIG, 23Na2O-xBi2O3-(12−x)Y2O3-25Fe2O3-20SiO2-20GeO2 (mol%), are developed, and the laser-induced crystallization technique is applied to the glasses to pattern YIG and Bi-doped YIG crystals on the glass surface. It is clarified from the Mössbauer effect measurements that iron ions in the glasses are present mainly as Fe3+. It is suggested from the X-ray diffraction analyses and magnetization measurements that Si4+ ions are incorporated into YIG crystals formed in the crystallization of glasses. The irradiations (laser power: 32-60 mW and laser scanning speed: 7 μm/s) of continuous wave Yb:YVO4 fiber laser (wavelength: 1080 nm) are found to induce YIG and Bi-doped YIG crystals, indicating that Fe3+ ions in the glasses act as suitable transition metal ions for the laser-induced crystallization. It is suggested that YIG and Bi-doped YIG crystals in the laser irradiated part might orient. The present study will be a first step for the patterning of magnetic crystals containing iron ions in glasses.  相似文献   

2.
Single crystals of disordered double sodium-gadolinium tungstate NaGd(WO4)2 doped with Tm ions were grown by the Czochralski method. The polarized absorption and emission spectra of these crystals with different activator concentrations and the decay kinetics of the 3 H 4 and 3 F 4 excited states of Tm3+ ions at 300 K were investigated. The absorption and emission cross sections of the expected laser transition 3 F 4 ? 3 H 6 in the Tm3+ ion were determined and the amplification spectra of the active laser medium NaGd(WO4)2:Tm at different levels of inverse population of the upper laser level 3 F 4 of the Tm3+ ion were constructed. The prospects for using these crystals as active media in 2-μm solid-state lasers are discussed.  相似文献   

3.
Yong-liang Li  Yu-lan Zhang 《Optik》2011,122(8):743-745
A sum-frequency yellow-green laser at 554.9 nm is reported by this paper, 946 nm wavelength is obtained from 4F3/2-4I9/2 transition in Nd:YAG and 1342 nm wavelength is obtained from 4F3/2-4I13/2 transition in Nd:YVO4. Using a doubly folded-cavity type-II critical phase matching KTP crystal intra cavity to make 946 nm laser from Nd:YAG and 1342 nm laser from Nd:YVO4 frequency summed, with incident pumped power of 30 W in Nd:YAG and 20 W in Nd:YVO4, TEM00 mode yellow-green laser at 554.9 nm at 1.15 W is obtained and its M2 factor is less than 1.22. The experimental results show that the Nd:YAG and Nd:YVO4 crystals intra-cavity sum-frequency mixing is an effective method for yellow-green laser and it can be applied to other two laser crystals to obtain more all-solid-state lasers with different wavelengths.  相似文献   

4.
3+ ion in the crystals YVO4, GdVO4, and Sr5(PO4)3F. The measurements were performed in the spectral region of the main laser transitions 4F3/24I9/2, 4F3/24I11/2, and 4F3/24I13/2by a continuous wave pump and probe technique. The calibrated gain and ESA spectra are presented and possible implications of ESA on the laser performance are estimated. It is shown that ESA can be a small loss factor to the laser emission near 1060 nm but does considerably diminish the effective emission cross sections near 1340 nm especially in Nd:YVO4 and Nd:GdVO4. Received: 29 January 1998/Revised version: 8 May 1998  相似文献   

5.
Yb3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal were recorded at the room temperature. The stimulated emission cross-sections of Yb3+ ions were calculated using the reciprocity method and Fuchtbauer-Ladenburg formula, respectively. The fluorescence decay curves of 2F5/2 manifold of Yb3+ ions were recorded at room temperature for both crystal and powder samples. The effect of radiation trapping on the spectroscopic properties is discussed. Comparison with other Yb3+-doped laser crystals is made. The results show that Yb3+:La2(WO4)3 crystal is a promising laser material.  相似文献   

6.
In this paper we show how the quantum efficiency of Nd3+-doped laser crystals can be measured by means of a very simple method. This method is based on a multiwavelength study of pump-induced crystal heating, and its major advantage is the simplicity of the required experimental set-up. It has been used to determine the quantum efficiency of the main infrared laser channel (4 F 3/2?4 I 11/2) of the Nd3+:Gd2(MoO4)3 non-linear laser crystal. The value obtained for the quantum efficiency (φ=0.97) is in good agreement with that obtained from the Judd–Ofelt formalism (φ=0.95). Received: 25 October 2000 / Revised version: 2 January 2001 / Published online: 27 April 2001  相似文献   

7.
The efficiency of erbium three-micron laser (laser transition 4I11/24I13/2) depends essentially on the ratio of the parameters of active energy transfer upconversion (ETU) from the laser levels. The parameters of both ETU processes can be obtained from the analysis of the shape of the kinetics of the 4I11/2 level in concentrated Er:YAG crystals, under short pulse pumping. Mathematical modeling is used to evaluate the sensitivity of the method and to estimate the errors which can be introduced by the inhomogeneous pumping and accidental impurities. It was found that the ratio of the parameters corresponding to the ETU from the laser levels is less sensitive to the pumping inhomogeneities than that corresponding to the lower laser level. A reduction of this ratio with increasing erbium concentration is observed.  相似文献   

8.
Sellmeier parameters of thirteen tetragonal (space group $I\overline{4}$ ) double tungstate and double molybdate laser crystals with M+T3+(X6+O4)2 composition have been calculated using the room temperature refractive indices determined from the ultraviolet band gap of the crystals to ????2 ??m. All considered crystals are uniaxial but only crystals with Bi in their composition show a significant birefringence (??n>10?2). The refractive index value increases for the sequence T3+=La, Y, Gd, Lu, and Bi independently of the M+ and X6+ cation pair. Implications for the design of laser waveguides and laser pulse dispersion are discussed.  相似文献   

9.
An extended complete diagonalization method/microscopic spin-Hamiltonian (CDM/MSH) program has been developed, which is applicable for d3 ions at sites of tetragonal symmetry type I (C4v, D2d, D4, D4h) and trigonal symmetry type I (C3v, D3, D3d). The Hamiltonian includes the spin-spin (SS) and spin-other-orbit (SOO) magnetic interactions besides the spin-orbit (SO) magnetic interaction usually taken into account. Utilizing the extended CDM/MSH program, the optical spectra, the spin-Hamiltonian (SH) parameters of the ground state 4B1, and the splitting δ(2E) of the first excited 2E state for Cr3+ (3d3) ions at C4v symmetry sites in MgO crystals have been successfully investigated. It is found that although the SO magnetic interaction is the most important one, the contributions to the SH parameters and the optical spectra from the SS and SOO magnetic interactions for Cr3+:MgO crystals are appreciable and should not be omitted, especially reaching 27.8% for the zero field splitting parameter D.  相似文献   

10.
Na0.4Y0.6F2.2:Er3+ (NYF:Er3+) crystals with an Er concentration up to 15% were grown by the Bridgman-Stockbarger method. The luminescence kinetics was investigated for a series of NYF:Er3+ crystals (0.5–15% Er), as well as the concentration and temperature quenching of the luminescence from radiative Er levels upon selective laser excitation. It is shown that the luminescence from the 4S3/2 level is quenched significantly with increasing temperature and concentration. The luminescence from the 4G11/2, 2G(H)9/2, 4F9/2, and 4I9/2 levels is quenched mainly due to nonradiative multiphonon transitions. The concentration quenching of the luminescence from the 4I11/2 and 4I13/2 levels was not observed. Possible schemes of the self-quenching of excited levels of erbium are considered and the microparameters and macrorates of self-quenching are estimated by model quantum-mechanical calculation. Based on the comparison of the calculated and experimental self-quenching rates, the most probable mechanisms and schemes of self-quenching are determined. The self-quenching of the 4S3/2 level of erbium was investigated experimentally and theoretically. Good agreement is obtained between the experimental and the calculated kinetic curves and the dependences of the self-quenching rates on Er concentration. It is concluded that NYF:Er3+ crystals are promising as active media for tunable lasers with laser diode pumping.  相似文献   

11.
We report on the frequency doubling of Q-switchedNd:YAG and Nd:YAlO3 lasers emitting at 946 and 930 nm, respectively (4F3/2 to 4I9/2 transition). The neodymium-doped laser host crystals were excited with a flashlamp-pumped Cr:LiSAF laser operating in a free-running mode. Blue-light pulses were obtained at both 473 nm (9 mJ, 25 ns FWHM) and 465 nm (4.4 mJ, 35 ns FWHM) by using a potassium niobate crystal as an extra-cavity frequency doubler. The second-harmonic generation conversion efficiencies reached 53% and 31%, respectively. Received: 23 June 1999 / Revised version: 8 August 1999 / Published online: 3 November 1999  相似文献   

12.
The single crystal of CaGa2S4:Eu is expected as a useful laser material with a high quantum efficiency of light emission. However, as far as our knowledge is concerned, the systematic study of the mixed compounds of Ca(1−x)EuxGa2S4 as a function of x has not been reported up to now. Here, we have first constructed the phase diagram of the CaGa2S4 and EuGa2S4 pseudo binary system, and show that it forms the solid solution. Then we have grown single crystals of these compounds. The maximum photoluminescence efficiency is achieved at x=0.25. From the three peak energies observed in the photoluminescence excitation (PLE) and absorption spectra, the 5d excited states are suggested to consist of three levels arising from the multiplets of Eu2+ ions.  相似文献   

13.
Based on the analysis of the absorption spectra of Er-doped calcium-niobium-gallium garnet (Er:CNGG) crystals according to the Judd-Ofelt theory, the intensity parameters for these crystals are determined to be Θ2 = 3.43 × 10?20 cm2 Θ4 = 1.20 × 10?20 cm2, and Θ6 = 0.58 × 10?20 cm2. The parameters found are compared with the intensity parameters for other laser oxide crystals. Using these intensity parameters, the probabilities of radiative transitions between the energy levels of Er3+ ions in CNGG crystals and the luminescence branching ratios βJJ’ are calculated. From the measured lifetime of the 4 I 11/2 level of Er3+ ions (τ = 626 μs) and the probability of the radiative transition from this level (A = 192 s?1), it is found that about 88% of the excitation energy in the Er:CNGG crystals is nonradiatively transferred from the 4 I 11/2 to the 4 I 13/2 level. It is suggested that an increase in the oscillator strength and in the line strength of the 4 I 15/22 H 11/2 transition of Er3+ in CNGG crystals, as well as an increase in the intensity parameter Θ2 with respect to the corresponding parameters for other garnet crystals are caused by the existence in CNGG crystals of Er3+ centers with the environment symmetry lower than D 2.  相似文献   

14.
Single crystals of glycine nitrate [(C2H6NO2)+ · (NO3)] were grown using submerged seed solution method. The crystals were characterized by using single crystal X-ray diffraction and density measurements. Spectroscopic, thermal and optical studies were carried out for analyzing the presence of the functional groups, thermal stability, decomposition and transparency of the sample. These studies showed that the crystals are thermally stable upto 145 °C and transparent for the fundamental and second harmonic generation of Nd:YAG (λ = 1064 nm) laser. Second harmonic generation (SHG) conversion efficiency was investigated to explore the NLO characteristics of this material. Microhardness and dielectric studies were also carried out.  相似文献   

15.
High-resistivity CdZnTe:V crystals are investigated by photoluminescence (PL) and by time-resolved PL in the infrared spectral range. A double peaked emission band is detected around 0.8 eV and it is related to vanadium doping. No-phonon lines of the internal transitions were detected. This emission is interpreted as a balance between the 4T1(4P)→4T1(4F) internal transition and an electronic transition from the conduction band to the 4T1(4F) ground state of V2+. The corresponding decay time after laser excitation gives evidence to the contribution of two different recombination processes. These two emission bands are separated by time-resolved luminescence. Crystal-field calculations of the detected transition energies based on Tanabe-Sugano scheme are presented and the Racah parameter B and crystal-field intensity Dq were determined.In addition, a model is developed in terms of one-electron orbital, to explain the characteristics of the PL excitation processes of V2+. Excitations with above and below band edge energy confirm the proposed schemes.  相似文献   

16.
Detailed study of dependence of the crystal field strength 10Dq and lowest charge transfer (CT) energies for different interionic distances in Cs2GeF6:Mn4+ and Cs2GeF6:Os4+crystals is presented. The calculations were performed using the first-principles discrete-variational Dirac-Slater (DV-DS) method. As a result, the functional dependencies of 10Dq and lowest CT energy on the metal-ligand distance R were obtained without any fitting or semiempirical parameters. It was shown that 10Dq depends on R as 1/Rn, with n=4.0612 and 4.3874 for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively. Two approximations (linear and quadratic) are obtained for the dependence of the lowest CT energy on R; CT energy decreases when R increases with dE(CT)/dR=−638 and −1080 cm−1/pm for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively, if the linear approximation is used. These values can be used for estimations of the lowest CT energies for Mn4+ and Os4+ ions in other hosts with fluorine ligands. Estimations of the electron-vibrational interaction (EVI) constants, Huang-Rhys parameters, and Stokes shifts for all the above-mentioned crystals were performed using the obtained 10Dq and E(CT) functions.  相似文献   

17.
3 and β-BaB2O4 crystals. The power of the generated 214.5-nm light amounts to more than 100 μW. This light source will be used for laser cooling of Cd+ ions. Received: 4 August 1997/Revised version: 28 October 1997  相似文献   

18.
Orthorhombic crystals of SrSO4, BaSO4, and PbSO4, known as natural crystals celestine, barite, and anglesite, were found to be attractive ?? (3)-active nonlinear optical materials. High-order Stokes and anti-Stokes picosecond generation that spans almost two octaves has been recorded with single-wavelength laser excitation in the UV, visible, and near-IR ranges. All recorded Raman induced lasing components were identified and attributed to the SRS-promoting vibration modes of the studied crystals (?? SRS??999?cm?1 for SrSO4,?? SRS??985?cm?1 for BaSO4 and ?? SRS??977?cm?1 for PbSO4). Under dual-wavelength (?? f1=1.06415???m + ?? f2=0.53207???m) collinear coherent picosecond pumping several new manifestations of cascaded ?? (3)??? (3) nonlinear up-conversion lasing effects were observed in BaSO4 and SrSO4 crystals. We classify all three studied sulfate crystals as promising SRS-active materials for Raman laser frequency converters and as efficient ?? (3)-crystals that efficiently generate Stokes and anti-Stokes frequency combs, which can enable experiments of ultra-short pulse syntheses.  相似文献   

19.
We report for the first time on tunable room temperature cw laser action of a transition metal laser material. In Cr3+:GdScGa-garnet crystals almost the total fluorescence is channelled into the broad band4 T 24 A 2 transition. The fluorescence lifetime is τ=120 μs. Laser pumping in the blue-green and yellow-red spectral range yields pump thresholds around 250 mW and slope efficiencies up to 11%. The wavelength of the free running Cr3+ laser is centered at 777 nm.  相似文献   

20.
The fluorescence of divalent samarium in KMgF3 and NaMgF3 crystals is investigated. The emission is observed to originate from transitions between the 5DJ, and 7FJ multiplets of the 4?6 configuration. More precisely, the lowest 5DJ level, 5D0, appears to be the most efficient emitting level in the temperature range 4–300K. Contrary to what has been reported elsewhere, the Sm2+ fluorescence in both crystals does not exhibit any broad band emission even at room temperature. The great number of lines in the 5D07FJ patterns gives evidence of the multiple-center origin of the fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号