首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phase-preserving and spectrally efficient slow-light scheme has been proposed and demonstrated by utilizing advanced multilevel phase-modulated formats. A 60 ps symbol delay with error-free demodulation of both I and Q channels for 10 Gbit/s return-to-zero differential-quadrature-phase-shift-keyed (DQPSK) signals via a broadband stimulated Brillouin scattering-based slow-light medium is achieved experimentally. Simulation results on 20 Gbit/s DQPSK and 30 Gbit/s D8PSK propose to transmit very high spectrally efficient multilevel formats through a bandwidth-limited slow-light element.  相似文献   

2.
We investigate the phase-preserving amplitude regenerative characteristics of the return-to-zero (RZ) differential- phase-shift-keying (DPSK) wavelength conversion based on four-wave m/xing (FWM) in a semiconductor optical amplifier (SOA). The Q-factor and the optical signal-to-noise ratio (OSNR) before and after conversion are experimentally obtained and analysed in different input noise power levels. In both the continuous-wave and synchronous clock pumping cases, we find that there is amplitude clamping in the FWM conversion due to the gain saturation of SOA, which can suppress the amplitude fluctuation of the converted DPSK signal before and after demodulation. We have achieved 2-dB Q penalty improvement in our experiment demonstration of lOGbit/s RZ-DPSK signal with OSNR lower than 19dB.  相似文献   

3.
Broad-band all-optical wavelength conversion of differential phase-shift keyed(DPSK) signal is experimentally demonstrated.This scheme is composed of a one-bit delay interferometer demodulation stage followed by a semiconductor optical amplifier(SOA) based nonlinear polarization switch.A wavelength converter for the10 Gb/s DPSK signal is presented,which has a wide wavelength range of more than 30 nm.The converted signals experience small power penalties less than 1.4 dB compared with the original signal,at a bit error rate of 10~(-9).Additionally,the optical spectra,the measured waveforms and the open eye diagrams of the converted signals show a high quality wavelength conversion performance.  相似文献   

4.
We propose and demonstrate all-optical wavelength conversion for optical duobinary (ODB), alternate-mark inversion (AMI), and frequency-shift keying (FSK) signals and a logic NOT gate for a FSK signal based on cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) in a periodically poled lithium niobate (PPLN) waveguide. ODB/AMI/FSK are generated from the demodulation of differential phase-shift keying (DPSK) using one-bit-delay fiber delay interferometer (FDI). PPLN-based 40 Gbit/s ODB/AMI/FSK wavelength conversion and FSK logic NOT gate are simultaneously implemented in the experiment.  相似文献   

5.
We propose and demonstrate the use of a single semiconductor optical amplifier (SOA) and optical filtering to time demultiplex tributaries from an optical time division multiplexing-differential phase shift keying (OTDM-DPSK) signal. The scheme takes advantage of the fact that phase variations added to the target channel by cross-phase modulation from the control signal are effectively subtracted in the differential demodulation scheme employed for DPSK signals. Demultiplexing from 80 to 40 Gbit/s is demonstrated with moderate power penalty using an SOA with recovery time twice as long as the bit period at 80 Gbit/s. Large dynamic ranges for the input power and SOA current are experimentally demonstrated. The scheme is expected to be scalable toward higher bit rates.  相似文献   

6.
Zhao J  Chen LK 《Optics letters》2007,32(12):1746-1748
We propose a novel three-chip differential phase-shift keying (DPSK) maximum likelihood sequence estimation (MLSE) for chromatic-dispersion (CD) and first-order polarization-mode-dispersion (PMD) compensation to extend the transmission reach of the DPSK signal. Such a technique searches the most probable path through the trellis for DPSK data sequence estimation by exploiting the phase difference between not only the adjacent optical bits but also the bits that are one bit slot apart. The proposed scheme significantly outperforms conventional two-chip DPSK MLSE in CD and PMD compensation. We show that the proposed three-chip DPSK MLSE can enhance the CD tolerance of 10 Gbit/s DPSK signal to 2.5 times of that by using two-chip DPSK MLSE and can bound the penalty for 100 ps differential group delay by 1.4 dB.  相似文献   

7.
We report a novel phase-erased demodulation of differential phase-shift keying (DPSK) by exploiting cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) in a periodically poled lithium niobate (PPLN) waveguide. Analytical solutions are derived to clearly describe the operation principle. The binary optical phase information carried by the conventional DPSK demodulation outputs is removed thanks to the cSHG/DFG in a PPLN waveguide. PPLN-assisted phase-erased wavelength conversion and demodulation of 40 Gbit/s non-return-to-zero DPSK (NRZ-DPSK), return-to-zero DPSK (RZ-DPSK), and carrier-suppressed return-to-zero DPSK (CSRZ-DPSK) are demonstrated in the experiment. Moreover, the accompanying all-optical format conversions from optical duobinary (ODB) to NRZ and from ODB/alternate-mark inversion (AMI) to RZ are also substantiated in the experiment. In addition, the calculated theoretical results including optical spectra, temporal waveforms, and phase diagrams also confirm the successful implementation of PPLN-assisted 40 Gbit/s NRZ-DPSK/RZ-DPSK/CSRZ-DPSK phase-erased wavelength conversion, demodulation, and ODB-to-NRZ and ODB/AMI-to-RZ format conversions.  相似文献   

8.
We present a novel coherent transceiver for optical differential phase-shift keying/differential quadrature phase-shift keying (DPSK/DQPSK) signals based on heterodyne detection and electrical delay interferometer. A simulation framework is provided to predict a theoretical sensitivity level for the reported scheme. High sensitivity of -45.18 dBm is achieved for 2.5-Gb/s return-to-zero (RZ)-DPSK signal, and high sensitivities of -36.83 dBm (I tributary) and -35.90 dBm (Q tributary) are observed for 2.5-GBaud/s RZ-DQPSK signal in back-to-back configuration. Transmission for both signals over 100 km is also investigated. Experimental results are discussed and analyzed.  相似文献   

9.
We demonstrate a photonic chip-based all-optical exclusive-OR (XOR) gate for phase-encoded optical signals via four-wave mixing in a highly nonlinear, dispersion-engineered chalcogenide (As2S3) planar waveguide. We achieve error-free, XOR operation for 40?Gbit/s differential phase shift keying (DPSK) optical signals with no power penalty. The effectiveness and broad bandwidth operation of our approach is highlighted by implementing an XOR gate for 160?Gbit/s DPSK signals.  相似文献   

10.
We present explicitly semi-analytical probability density functions (pdf’s) of noise statistics in DPSK receivers with Mach-Zehnder interferometer (MZI) demodulation with considering the phase noise for the first time. Error performance of DPSK receivers with MZI demodulation is evaluated by using the calculated pdf’s. It is found that DPSK receivers with MZI demodulation and balanced detection are less sensitive to phase noise impact than those with the single-port detection to some extent. Moreover, it is found that ASE-ASE beat noise induced pdf difference in balanced detection compared to single-port detection may result in ∼3 dB improvement in receiver sensitivity mainly depending on optical filtering, ASE-amplified spontaneous emission. Therefore, the measured receiver sensitivity improvement by using balanced detection consist of the improvements due to signal energy difference and ASE-ASE beat noise induced pdf difference compared to single-port detection.  相似文献   

11.
We propose and numerically investigate a novel high-speed (40-Gb/s and above) optical frequency shift-keying (FSK) transmitter scheme. By optical carrier-suppressed modulation and differential phase-shift-keying (DPSK) to intensity modulation (IM) conversion, only one light source is needed in the proposed scheme to generate high-speed optical FSK signals. By using a Mach-Zehnder modulator (MZM) as phase modulator and an additional delay interferometer (DI) cascaded after the carrier-suppressed MZM to suppress the remaining carrier, the performance of our scheme can compete with the double-light-source counterparts. The transmission performances of the FSK signal generated with the proposed scheme as well as detuning and bandwidth tolerance of the demodulation filter are also carefully investigated. Simulation results show that the proposed FSK generation scheme is very suitable for the next-generation optical access network and optical label switching network. A potential application of our scheme in high-speed passive optical network is proposed.  相似文献   

12.
实现了42.8 Gbit/s 差分相移键控调制信号的三信道波分复用传输实验.传输链路为410 km的标准单模光纤,分为四个放大段,采用色散补偿光纤进行色散补偿和掺铒光纤放大器/分布式喇曼放大器混合放大方式.给出了差分相移键控信号及其解调后的信号在背对背和传输后的光谱和眼图(中路波长信号).在接收端使用单端检测,给出中路波长的差分相移键控信号背对背情况和传输后的误码率曲线,并与单信道传输时进行比较.经过传输后的中路信号的误码率可维持在1.0E-3左右.  相似文献   

13.
实现了42.8 Gbit/s 差分相移键控调制信号的三信道波分复用传输实验.传输链路为410 km的标准单模光纤,分为四个放大段,采用色散补偿光纤进行色散补偿和掺铒光纤放大器/分布式喇曼放大器混合放大方式.给出了差分相移键控信号及其解调后的信号在背对背和传输后的光谱和眼图(中路波长信号).在接收端使用单端检测,给出中路波长的差分相移键控信号背对背情况和传输后的误码率曲线,并与单信道传输时进行比较.经过传输后的中路信号的误码率可维持在1.0E-3左右.  相似文献   

14.
利用高非线性光纤中的四波混频饱和效应,实验展示了42.8 Gbit/s非归零差分相移键控(NRZ-DPSK)信号和归零差分相移键控(RZ-DPSK)信号的全光幅度再生.测量了NRZ-DPSK信号和RZ-DPSK信号经过高非线性光纤的功率传递曲线.在平均输入功率均为16 dBm的条件下,对两种调制格式的再生性能进行了比较.实验结果显示RZ-DPSK信号具有更好的幅度再生性能.  相似文献   

15.
刘鎏  郑建宇  张明江  孟丽娜  张朝霞  王云才 《物理学报》2012,61(8):84204-084204
用光反馈半导体激光器产生混沌超宽带(UWB)信号, 搭建了混沌UWB光载无线通信链路, 实现了360, 720 Mbit/s和1.44 Gbit/s三种不同传输速率下混沌UWB脉冲信号的生成和传输. 在未经任何色散补偿处理的情况下, 1.44 Gbit/s的混沌UWB信号在经过10 km单模光纤和0.6 m无线链路传输后, 在天线接收端被成功解调. 由于混沌UWB信号输出的随机性, 对应的UWB信号频谱中未出现任何离散的谱线. 这意味着利用混沌UWB信号实现的光载无线通信链路, 可以完全避免离散谱线对系统传输性能的劣化.  相似文献   

16.
张印  董建绩  雷蕾  张新亮 《中国物理 B》2012,21(2):24209-024209
All-optical digital logic elementary circuits are the building blocks of many important computational operations in future high-speed all-optical networks and computing systems. Multifunctional and reconfigurable logic units are essential in this respect. Employing the demodulation properties of delay interferometers for input differential phase shift keying signals and the gain saturation effect in two parallel semiconductor optical amplifiers, a novel design of 40 Gbit/s reconfigurable all-optical dual-directional half-subtractor is proposed and demonstrated. All output logic results show that the scheme achieves over 11=dB extinction ratio, clear and wide open eye diagram, as well as low polarization dependence (< 1 dB), without using any additional input light beam. The scheme may provide a promising candidate for future ultrafast all-optical signal processing applications.  相似文献   

17.
In this work we present a numerical code for evaluating the system performances of wavelength division multiplexed (WDM) point-to-point optically amplified links, taking into account the behavior of the erbium amplifier with WDM signals. The code uses a conventional split-step method to evaluate the signal propagation in the optical fiber while the signal at the amplifier output is obtained after having evaluated the gain and amplified spontaneous emission noise contribution by finding the evolution of the excited ion fraction along the doped fiber. As an example, we study a 16 x 2.5 Gbit/s system operating in a link 1000 km long with an amplifier spacing of 100 km.  相似文献   

18.
We propose a multi-aperture slow-light laser radar with two-dimensional scanning. We demonstrate experimentally that we can use two independent slow-light mechanisms, namely dispersive delay and stimulated Brillouin scattering, to dynamically compensate the group delay mismatch among different apertures, while we use optical phase locking to control the relative phases of the optical signals emitted from different apertures, as the system steers the beam in two dimensions.  相似文献   

19.
In this work we present a numerical code for evaluating the system performances of wavelength division multiplexed (WDM) point-to-point optically amplified links, taking into account the behavior of the erbium amplifier with WDM signals. The code uses a conventional split-step method to evaluate the signal propagation in the optical fiber while the signal at the amplifier output is obtained after having evaluated the gain and amplified spontaneous emission noise contribution by finding the evolution of the excited ion fraction along the doped fiber. As an example, we study a 16 x 2.5 Gbit/s system operating in a link 1000 km long with an amplifier spacing of 100 km.  相似文献   

20.
We demonstrate an all-optical scheme for the simultaneous drop and wavelength conversion of bursts of data from a continuous stream of differential phase-shift keyed (DPSK) signals. This function is obtained in a single semiconductor optical amplifier Mach-Zehnder interferometer thanks to proper nonlinear interaction of the data stream and an optical gate signal at different wavelength. Fast switching-time enabling wavelength shifting operation on continuous DPSK data stream at 10 and 40 Gb/s without any bit loss is reported. Corresponding measured power penalties are negligible at 10 Gb/s and about 1.7 dB at 40 Gb/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号