首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A numerical investigation of laminar flow over a three-dimensional backward-facing step is presented with comparisons with detailed experimental data, available in the literature, serving to validate the numerical results. The continuity constraint method, implemented via a finite element weak statement, was employed to solve the unsteady three-dimensional Navier–Stokes equations for incompressible laminar isothermal flow. Two-dimensional numerical simulations of this step geometry underestimate the experimentally determined extent of the primary separation region for Reynolds numbers Re greater than 400. It has been postulated that this disagreement between physical and computational experiments is due to the onset of three-dimensional flow near Re ≈ 400. This paper presents a full three-dimensional simulation of the step geometry for 100⩽ Re⩽ 800 and correctly predicts the primary reattachment lengths, thus confirming the influence of three-dimensionality. Previous numerical studies have discussed possible instability modes which could induce a sudden onset of three-dimensional flow at certain critical Reynolds numbers. The current study explores the influence of the sidewall on the development of three-dimensional flow for Re greater than 400. Of particular interest is the characterization of three-dimensional vortices in the primary separation region immediately downstream of the step. The complex interaction of a wall jet, located at the step plane near the sidewall, with the mainstream flow reveals a mechanism for the increasing penetration (with increasing Reynolds number) of three-dimensional flow structures into a region of essentially two-dimensional flow near the midplane of the channel. The character and extent of the sidewall-induced flow are investigated for 100⩽Re⩽ 800. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Particle dispersion in a single-sided backward-facing step flow   总被引:8,自引:0,他引:8  
The paper describes the particle dispersion in a single-sided backward-facing step flow. Particles of well-known sizes in the diameter range from 1 to 70 μm were suspended in an air flow and the particle motion over a step was measured by mean of a laser-Doppler anemometer. Thus, the local and integral flow quantities, i.e. the mean and turbulent velocity data could be measured precisely. In the experiments, monodispersed particle size distributions were used to exclude particle size related information ambiguity, known as triggering effects or size bias. The results of this study show qualitatively and quantitatively the difference in time-averaged particle dynamics for selected particle sizes in a backward-facing step flow. The experiments show, for different sizes, the changes in the particle velocity field in comparison with the velocity field of the continuous phase deduced from the 1 μm particles, and also imply the strong influences which different particle sizes have on flow data evaluation when size effects are not taken into account with particle-related optical measuring techniques.  相似文献   

3.
This work characterizes the impacts of the realistic roughness due to deposition of foreign materials on the turbulent flows at surface transition from elevated rough-wall to smooth-wall. High resolution PIV measurements were performed in the streamwise-wall-normal (xy) planes at two different spanwise positions in both smooth and rough backward-facing step flows. The experiment conditions were set at a Reynolds number of 3450 based on the free stream velocity U and the mean step height h, expansion ratio of 1.01, and the ratio of incoming boundary layer thickness to the step height, δ/h, of 8. The mean flow structures are observed to be modified by the roughness and they illustrate three-dimensional features in rough backward-facing step flows. The mean reattachment length Xr is significantly reduced by the roughness at one PIV measurement position while is slightly increased by the different roughness topography at the other measurement position. The mean velocity profiles at the reattachment point indicate that the studied roughness weakens the perturbation of the step to the incoming turbulent flow. Comparisons of Reynolds normal and shear stresses, productions of normal stresses, quadrant analysis of the instantaneous shear-stress contributing events, and mean spanwise vorticity reveal that the turbulence in the separated shear layer is reduced by the studied roughness. The results also indicate an earlier separation of the turbulent boundary layer over the current rough step, probably due to the adverse pressure gradient produced by the roughness topography even before the step.  相似文献   

4.
The incompressible laminar flow of air and heat transfer in a channel with a backward-facing step is studied for steady cases and for pulsatile inlet conditions. For steady flows the influence of the inlet velocity profile, the height of the step and the Reynolds number on the reattachment length is investigated. A parabolic entrance profile was used for pulsatile flow. It was found with amplitude of oscillation of one by Re=100 that the primary vortex breakdown through one pulsatile cycle. The wall shear rate in the separation zone varied markedly with pulsatile flows and the wall heat transfer remained relatively constant. The time-average pulsatile heat transfer at the walls was greater as with steady flow with the same mean Reynolds number.  相似文献   

5.
The effect of oscillating a small foil in plunge on the reattachment of a separated shear layer in a two-dimensional backward-facing step flow has been studied using flow visualization and single component laser Doppler velocimetry (LDV) measurements. It has been shown that a jet instead of a wake is generated by the flapping action of the foil. Results indicate that this action induces strong mixing and entrainment when the foil is located within the recirculation flow region, thereby reducing the reattachment length by as much as 70%. Furthermore, it has been shown that the flapping foil is most effective in reducing the size of the separation zone when placed close to the wall and to the step. It is least effective when placed outside the separated shear layer or downstream of the reattachment zone. Received: 26 August 1999 / Accepted: 29 May 2001  相似文献   

6.
A laboratory water channel experiment was made of the separated flow over a backward-facing step. The flow was excited by a sinusoidally oscillating jet issuing from a separation line. The slit was connected to a cavity in which water was forced through a rigid pipe by a scotch-yoke system. The Reynolds number based on the step height (H) was fixed at Re H =1200. The forcing frequency was varied in the range 0.305?St H ?0.955 at the forcing amplitude A 0=0.3. Time-averaged flow measurements were made by a LDV system, especially in the recirculating region behind the backward-facing step. To characterize the large-scale vortex evolution due to the local forcing, flow visualizations were performed by a dye tracer method with fluorescent ink. The vortex amalgamation process was captured at the effective forcing frequency (St H =0.477) for laminar separation. This vortex merging process enhances flow mixing, which leads to the shortening of the reattachment length.  相似文献   

7.
Particle image velocimetry (PIV) measurements were carried out on a backward-facing step flow at a Reynolds number of Reh=UXh/9=4,660 (based on step height and freestream velocity). In-plane velocity, out-of-plane vorticity, Reynolds stress and turbulent kinetic energy production measurements in the x-y and x-z planes of the flow are presented. Proper orthogonal decomposition was performed on both the fluctuating velocity and vorticity fields of the x-y plane PIV data using the method of snapshots. Low-order representations of the instantaneous velocity fields were reconstructed using the velocity modes. These reconstructions provided insight into the contribution that the various length scales make to the spatial distribution of mean and turbulent flow quantities such as Reynolds stress and turbulent kinetic energy production. Large scales are found to contribute to the Reynolds stresses and turbulent kinetic energy production downstream of reattachment, while small scales contribute to the intense Reynolds stresses in the vicinity of reattachment.  相似文献   

8.
Measuring turbulence energy with PIV in a backward-facing step flow   总被引:4,自引:0,他引:4  
Turbulence energy is estimated in a backward-facing step flow with three-component (3C, stereo) particle image velocimetry (PIV). Estimates of turbulence energy transport equation for convection, turbulence transport, turbulence production, viscous diffusion, and viscous dissipation in addition to Reynolds stresses are computed directly from PIV data. Almost all the turbulence energy terms in the backward-facing step case can be measured with 3C PIV, except the pressure-transport term, which is obtained by difference of the other turbulence energy terms. The effect of the velocity spatial sampling resolution in derivative estimations is investigated with four two-dimensional PIV measurement sets. This sampling resolution information is used to calibrate the turbulence energies estimated by 3C PIV measurements. The focus of this study is on the separated shear layer of the backward-facing step. The measurements with 3C PIV are carried out in a turbulent water flow at Reynolds number of about 15,000, based on the step height h and the inlet streamwise maximum mean velocity U0. The expansion ratio (ER) is 1.5. Turbulence energy budget profiles in locations x/h=4, x/h=6, and x/h=10 are compared with DNS data of a turbulent flow. The shapes of profiles agree well with each other. Different ERs between the PIV case (1.5) and the DNS case (1.2) cause higher values for the turbulence energies measured by PIV than the energies by DNS when x/h=10 is approached. PIV results also show that the turbulence energy level in these experiments is generally higher than that of the DNS data.  相似文献   

9.
10.
Numerical solutions using the SIMPLE algorithms for laminar flow over a backward-facing step are presented. Five differencing schemes were used: hybrid; quadratic upwind (QUICK); second-order upwind (SOUD); central-differencing and a novel scheme named second-order upwind biased (SOUBD). The SOUBD scheme is shown to be part of a family of schemes which include the central-differencing, SOUD and QUICK schemes for uniform grids. The results of the backward-facing step problem are presented and are compared with other numerical solutions and experimental data to evaluate the accuracy of the differencing schemes. The accuracy of the differencing schemes was ascertained by using uniform grids of various grid densities. The QUICK, SOUBD and SOUD schemes gave very similar accurate results. The hybrid scheme suffered from excessive diffusion except for the finest grids and the central-differencing scheme only converged for the finest grids.  相似文献   

11.
Results of calculations of fluid flow over a step located on a channel bottom are given. Numerical modeling is performed for the model of free-boundary potential flows of an ideal incompressible fluid using a finite-difference method with dynamically adaptive grids. The behavior of the free surface in the neighborhood of the step is studied as a function of the incident-flow velocity. The results are compared with experimental data. __________ Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 6, pp. 17–22, November–December, 2006.  相似文献   

12.
 In this paper an experimental investigation of a starting water flow downstream of a backward-facing step is described. The Reynolds number of the asymptotic steady flow is Re≈4300 based on the step height of s=2 cm and the free stream velocity of U=21.4 cm/s. Velocity measurements were performed with video-based DPIV (Digital Particle Image Velocimetry) at a sampling frequency of 25 Hz. The main purpose of this study is to reveal the temporal development of global structures which could not be analyzed with single-point probes. It was found that at initialization of the flow a regular vorticity street is formed, which collapses at a normalized time t * =U t/s≈17 due to vorticity interactions. After this the flow is dominated by complicated vorticity roll-up and shedding dynamics in the recirculation region. The starting phase is terminated for t * >40. Prior to the collapse of the vorticity street values of 9 times the steady state asymptotic wall normal stress and of twice the steady state negative wall shear stress were observed. The early increasing slope of the reattachment length is constant over a time of approximately t * =8. The collapse of the vorticity street and the vorticity interactions thereafter cause fluctuations both in the velocity in the free shear layer and in the reattachment length. The fully developed flow has a dominant frequency corresponding to a Strouhal number St=fs/U≈0.04. Received: 20 September 1996/Accepted: 1 April 1997  相似文献   

13.
14.
The study investigates the entrance effect for flow over a backward-facing step by comparing predictions that set the inlet boundary at various locations upstream of the sudden expansion. Differences are most significant in the sudden expansion region. If the geometry has an inlet channel, then shorter reattachment and separation lengths are predicted. Comparisons with experimental data indicate that better agreement is found using a long inlet channel, but only for low Reynolds numbers where the experimental error is less significant. For certain cases, predictions with a high expansion number are perturbed by the entrance effect more than low-expansion-number predictions; however, the effect is localized in the sudden expansion region. Channels with low expansion numbers always experience a greater entrance effect after some distance upstream and downstream of the sudden expansion. The boundary layer growth in the inlet channel was examined using a uniform inlet velocity profile. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is devoted to the computation of turbulent flows by a Galerkin finite element method. Effects of turbulence on the mean field are taken into account by means of a k-? turbulence model. The wall region is treated through wall laws and, more specifically, Reichardt's law. An inlet profile for ? is proposed as a numerical treatment for physically meaningless values of k and ?. Results obtained for a recirculating flow in a two-dimensional channel with a sudden expansion in width are presented and compared with experimental values.  相似文献   

16.
The present paper is devoted to the computation of turbulent flows by a Galerkin finite element method. Effects of turbulence on the mean field are taken into account by means of a (k-ε) turbulence model. The wall region is treated through wall laws and, more specifically, Reichardt's law. An inlet profile for ε is proposed as a numerical treatment for physically meaningless values of k and ε. Results obtained for a recirculating flow in a two-dimensional channel with a sudden expansion in width are presented and compared with experimental values.  相似文献   

17.
Applied Mathematics and Mechanics - A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary...  相似文献   

18.
19.
An experimental study was carried out to elucidate the large-scale vortical structure in a separated and reattaching flow over a backward-facing step. The Reynolds number based on the step height (H) was Re H =33,000. The large-scale vortical structure was probed by means of three-dimensional velocity measurements performed at the recirculation zone (x/H=4.0) and the reattachment zone (x/H=7.5). A 32-channel microphone array extending in the streamwise and spanwise directions was used for sensing the wall pressure fluctuations. The relationship between the flow field and the relevant spatial mode of the pressure field was determined by examining the spatial box filtering. From the relevant spatial mode of the wall pressure fluctuations, a conditional averaging technique was employed to characterize the coherent structure. In addition, the cross-correlation between velocity and wall pressure fluctuations was calculated to identify the structure and the length scale of the large-scale vortex. The cross-correlation results revealed that the large-scale hairpin vortices have a three-dimensional structure, in agreement with previous findings. The present results clearly show the growth and downstream elongation of the hairpin vortices.List of symbols H step height, m - k turbulent kinetic energy, m2/s2 - q freestream dynamic pressure, Pa - Re H Reynolds number based on U 0 and H,U oH/ - U 0 freestream velocity, m/s - U c convection velocity, m/s - X 0 streamwise coordinate of the measurement origin, m - x R time mean reattachment length, m Greek symbols p forward flow time fraction - cross-correlation coefficient - time delay, s - vorticity, m2/s  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号