首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
给出一个适用于流体力学数值模拟的湍流混合模型。由于引入湍流质量通量和密度脉动关联量的演化方程,它比一般的k-模型能更准确地描述界面不稳定性引起的可压缩湍流混合过程,并且可以不需要人为给定初始湍流场。我们用同一套参数模拟了不同Atwood数的激波管实验,数值结果与实验基本一致。  相似文献   

2.
界面不稳定性引起湍流混合的二阶封闭模型   总被引:1,自引:1,他引:1  
在Besnard[1~3]等人的模型基础上发展了一个二阶封闭模型。它比原模型少二个方程,降低了计算量,使模型更具有经济性。并采用各向异性的扩散系数,能够更好地描述各向异性的湍流流场。编写了一维可压缩流体力学湍流混合程序,数值模拟Brouilette[4]等的实验结果。数值模拟结果与实验完全一致。  相似文献   

3.
发展了考虑密度脉动和各向异性湍流的二阶矩模型,强调了涉及湍流能量产生项的关联。采用该模型对Poggi等的激波管实验进行了模拟。通过与实验结果的比较分析,验证了采用的模型封闭、模型常数、数值算法和程序实现是合适的。在此基础上,进一步探讨了冲击马赫数和Atwood数对混合的影响。  相似文献   

4.
通过引入混合密度函数发展了一种新的空化模型,运用Navier-Stokes方程加k-ε两方程湍流模型对Ep-pler E817和NACA 0015水翼的空化流动进行了数值模拟,得到了从空化到超空化的一系列变化过程的数值模拟结果。通过与实验数据进行对比,发现二者吻合较好。  相似文献   

5.
用基于M-SST模型的DES数值模拟喷流流场   总被引:6,自引:0,他引:6  
脱体涡数值模拟方法(dettached eddy simulation,DES)是把雷诺平均Navier-Stokes方程(RANS)方法及大涡模拟方法(LES)结合起来模拟有脱体涡的湍流流场的数值模拟方法,其主要思想是在物面附近解雷诺平均Navier-Stokes方程、在其他区域采用Smagorinski大涡模拟方法。本文在剪切应力传输(SST)湍流模型的基础上用DES及混合非结构网格数值模拟具有横向喷流的湍流流场,算法采用Osher逆风格式,利用该套程序(包括网格生成及算法),对导弹在不同马赫数下的喷流流场进行了数值模拟,并与同时开展的实验研究的结果进行了对比,结果表明用该方法处理这类问题是较准确的。  相似文献   

6.
王涛  李平  柏劲松  汪兵  陶钢 《爆炸与冲击》2013,33(5):487-493
采用拉伸涡亚格子尺度应力模型对湍流输运中的亚格子作用项进行模式化处理,发展了适用于可压多介质黏性流动和湍流的大涡模拟方法和代码MVFT(multi-viscous flow and turbulence)。利用MVFT代码对低密度流体界面不稳定性及其诱发的湍流混合问题进行了数值模拟。详细分析了扰动界面的发展,流场中冲击波的传播、相互作用、湍流混合区边界的演化规律,以及流场瞬时密度和湍动能的分布和发展。数值模拟获得的界面演化图像和流场中波系结构与实验结果吻合较好。三维和二维模拟结果的比较显示,两者得到的扰动界面位置、波系及湍流混合区边界基本一致,只是后期的界面构型有所不同,这也正说明湍流具有强三维效应。  相似文献   

7.
将两方程k-ω SST湍流模型和Sagaut的混合尺度亚格子模型通过一个混合函数相结合, 构造出一种混合大涡/雷诺平均N-S方程模拟方法(hybird large eddy simulation/reynolds-averaged navier-stokes, Hybrid LES/RANS), 采用这种混合模拟方法结合5阶WENO格式对Ma=2.8平板湍流边界层进行了数值模拟, 并在计算区域上游入口处采用“回收/调节”方法生成湍流脉动边界条件, 通过考查RANS区域向LES区域的过渡参数及网格分辨率对这种混合模拟方法进行了评价. 计算结果表明: 该文采用的混合模拟方法可以捕捉到湍流边界层中的大尺度结构且入口边界层平均参数不会发生漂移, 混合函数应当将RANS区域和LES区域的过渡点设置在对数律层和尾迹律层的交界处, 而过渡应当迅速以获得正确的雷诺剪切应力分布, 在该文采用的模型及数值方法的条件下, 流向及展向的网格小至与Escudier混合长相当时, 能够获得可以接受的脉动速度的单点-二阶统计值.  相似文献   

8.
平面突扩流动非稳定性的大涡模拟   总被引:7,自引:1,他引:7  
用TG有限元法求解二维大涡模拟的非定常N-S方程,数值模拟了平面突扩流动,计算结果展示了回流区内流动的多涡结构及其不稳定的周期振荡过程,而该振荡过程的周期时间历程平均,恰好与诸多湍流模型的计算结果及实验结果相吻合,证明了数值模拟的正确性。  相似文献   

9.
强光林  杨易  陈阵  谷正气  张勇 《力学学报》2020,52(5):1371-1382
本文将汽车绕流模块化为各典型局部流动,通过常用湍流模型对各典型局部流动进行数值模拟,结果验证了湍流模型对转捩的捕捉能力是准确模拟汽车绕流的关键. 在分析汽车绕流分离及转捩机理的基础上,优化了稳态和瞬态求解方法,改进了湍流模型对转捩的预测能力,进而提高了湍流模型在汽车流场模拟上的精度. 针对汽车绕流的稳态问题,将流线曲率因子及 响应阈值引入 LRN $k$-$\varepsilon $ (low Reynolds number $k$-$\varepsilon $) 模型,获得了一种能够更准确预 测转捩的改进低雷诺数湍流模型 (modified LRN $k$-$\varepsilon $),改善了原模型对湍流耗散率的过强依赖性及全应力发展预测不足等问题;针对汽车绕流瞬态求解,通过分析 RANS/LES 混合湍流模型的构造思想及特点,引入约束大涡模拟方法,结合本文提出的改进的 LRN $k$-$\varepsilon $ 湍流模型,提出了一种能准确捕捉转捩现象 的转捩 LRN CLES 模型. 分别将改进的模型用于某实车外流场和风振噪声仿真中,通过 Ansys Fluent 求解器计算,并将计算结果与常用湍流模型的仿真结果、HD-2 风洞试验结果和实车道路实验结果进行对比,表明改进后的湍流模型能够更准确模拟复杂实车的稳态和瞬态特性,为汽车气动特性的研究提供了可靠理论依据及有效数值解决方法.   相似文献   

10.
本文将汽车绕流模块化为各典型局部流动,通过常用湍流模型对各典型局部流动进行数值模拟,结果验证了湍流模型对转捩的捕捉能力是准确模拟汽车绕流的关键. 在分析汽车绕流分离及转捩机理的基础上,优化了稳态和瞬态求解方法,改进了湍流模型对转捩的预测能力,进而提高了湍流模型在汽车流场模拟上的精度. 针对汽车绕流的稳态问题,将流线曲率因子及 响应阈值引入 LRN $k$-$\varepsilon $ (low Reynolds number $k$-$\varepsilon $) 模型,获得了一种能够更准确预 测转捩的改进低雷诺数湍流模型 (modified LRN $k$-$\varepsilon $),改善了原模型对湍流耗散率的过强依赖性及全应力发展预测不足等问题;针对汽车绕流瞬态求解,通过分析 RANS/LES 混合湍流模型的构造思想及特点,引入约束大涡模拟方法,结合本文提出的改进的 LRN $k$-$\varepsilon $ 湍流模型,提出了一种能准确捕捉转捩现象 的转捩 LRN CLES 模型. 分别将改进的模型用于某实车外流场和风振噪声仿真中,通过 Ansys Fluent 求解器计算,并将计算结果与常用湍流模型的仿真结果、HD-2 风洞试验结果和实车道路实验结果进行对比,表明改进后的湍流模型能够更准确模拟复杂实车的稳态和瞬态特性,为汽车气动特性的研究提供了可靠理论依据及有效数值解决方法.  相似文献   

11.
Preface     
This special issue of PARTICUOLOGY is devoted to the first UK-China Particle Technology Forum taking place in Leeds, UK, on 1-3 April 2007. The forum was initiated by a number of UK and Chinese leading academics and organised by the University of Leeds in collaboration with Chinese Society of Particuology, Particle Technology Subject Group (PTSG) of the Institution of Chemical Engineers (IChemE), Particle Characterisation Interest Group (PCIG) of the Royal Society of Chemistry (RSC) and International Fine Particle Research Institute (IFPRI). The forum was supported financially by the Engineering and Physics Sciences Research Council (EPSRC) of United Kingdom,  相似文献   

12.
正http://www.icfm7.org First Announcement and Call for PapersThe objective of International Conference on Fluid Mechanics(ICFM)is to provide a forum for researchers to exchange new ideas and recent advances in the fields of theoretical,experimental,computational Fluid Mechanics as well as interdisciplinary subjects.It was successfully convened by the Chinese Society of Theoretical and Applied Mechanics(CSTAM)in Beijing(1987,  相似文献   

13.
Contributions: The Journal, Acta Mechanica Solida Sinica, is pleased to receive papers from engineers and scientists working in various aspects of solid mechanics. All contributions are subject to critical review prior to acceptance and publication.  相似文献   

14.
15.
16.
17.
18.
正Each of the sections below provides essential information for authors.We recommend that you take the time to read them before submitting a contribution to Acta Mechanica Sinica.We hope our guide to authors may help you navigate to the appropriate section.How to prepare a submission This document provides an outline of the editorial process involved in publishing a scientific paper in Acta Mechanica Sinica.  相似文献   

19.
针对捷联导引头无法直接获取视线角速度等信息的问题,研究了鲁棒滤波在大气层外飞行器捷联导引头视线角速度估计中的应用。为了建立非线性滤波估计模型,考虑目标视线角速度的慢变特性,采用一阶马尔科夫模型建立了状态方程;推导了视线角速度的解耦模型,并建立了量测方程;考虑到实际应用中存在系统噪声统计特性失准的问题,基于Huber-Based鲁棒滤波方法,设计了视线角速度滤波器,并完成了基于Huber-Based滤波方法和扩展卡尔曼滤波方法的数学仿真。仿真结果表明Huber-Based滤波方法的视线角、视线角速度及视线角加速度估计精度分别达到0.1140'、0.1423'/s、0.0203'/s2,而扩展卡尔曼滤波方法的视线角、视线角速度及视线角加速度估计精度仅分别为0.6577'、0.6415'/s、0.0979'/s~2。仿真结果证明了该方法可以有效地估计出相对视线角速度等信息,并且在非高斯噪声的条件下,依然可获得较高的估计精度,具有一定的鲁棒性。  相似文献   

20.
《Acta Mechanica Sinica》2014,(3):F0003-F0003
正Each of the sections below provides essential information for authors.We recommend that you take the time to read them before submitting a contribution to Acta Mechanica Sinica.We hope our guide to authors may help you navigate to the appropriate section.How to prepare a submission This document provides an outline of the editorial process involved in publishing a scientific paper in Acta Mechanica  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号