首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This paper reports the effect of surface topography of titanium dioxide films on short-circuit current density of photoelectrochemical solar cell of ITO/TiO2/PVC-LiCLO4/graphite. The films were deposited onto ITO-covered glass substrate by screen-printing technique. The films were tempered at 300 °C, 350 °C, 400 °C, 450 °C and 500 °C for 30 min to burn out the organic parts and to achieve the films with porous structure. The surface roughness of the films were studied using scanning electron microscope (SEM). Current–voltage relationship of the devices were characterized in dark at room temperature and under illumination of 100 mW cm−2 light from tungsten halogen lamp at 50 °C. The device utilising the TiO2 film annealed at 400 °C produces the highest short-circuit current density and open-circuit voltage as it posses the smoothest surface topography with the electrolyte. The short-circuit current density and open-circuit voltage of the devices increase with the decreasing grain size of the TiO2 films. The short-circuit current density and open-circuit voltage are 0.6 μA/cm2 and 109 mV respectively.  相似文献   

2.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The structural, electrical, and optical properties of ZnO:Ga films were investigated in a wide temperature range from room temperature up to 400 °C. The crystallinity and surface morphology of the films are strongly dependent on the growth temperatures, which in turn exert an influence on the electrical and optical properties of the ZnO:Ga films. The film deposited at 350 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.4 × 10−4 Ω cm. More importantly, the low-resistance and high-transmittance ZnO:Ga films were also obtained at a low temperature of 150 °C by changing the sputtering powers, having acceptable properties for application as transparent conductive electrodes in LCDs and solar cells.  相似文献   

3.
A novel measurement method of temperature based on the phenomena that the phase difference between principle polarization states in the optical retarder is function of temperature is described. The polarization state of optical beam is changed as it passes through the optical retarder, which depends on the temperature. The temperature of optical retarder is determined by comparison of the power difference between principal polarization states. We demonstrate successfully the temperature measurement by using a polarization maintaining fiber as the optical retarder. With a 100 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.236 rad/°C and the measurement error was ±0.038°C over the temperature range of −2.6 – +3.4°C. With a 11.5 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.021 rad/°C and the measurement error was ±0.79°C over the temperature range of −8.5 – +86.5°C.  相似文献   

4.
InN films have been grown by plasma-assisted molecular beam epitaxy (PAMBE) and characterized by various technologies. It was found that the structural, optical and electrical properties can be drastically improved by raising growth temperature from 440 to 525 °C. Grainy morphology was found in the grain size was found in atomic force microscope images. The large grain size was about 360 nm for a film grown at 525 °C. These films exhibited Wurtzite structure with a c/a ratio ranging from 1.59 to 1.609. The dislocation densities estimated by X-ray diffraction techniques closely agreed with those analyzed by plan-view transmission electron microscopy. Photoluminescence (PL) studies confirmed near band-to-band transitions and the narrowest low-temperature PL peak width was found to be 24 meV at 0.666 eV. Carrier concentrations decreased from 1.44×1019 to 1.66×1018 cm−3 and Hall mobility increased from 226 to 946 cm2 V−1 s−1 as the growth temperature is progressively increased from 440 to 525 °C. Raman spectra also indicated improved crystal quality as the growth temperature was raised.  相似文献   

5.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

6.
The main purpose of this study was to verify the feasibility of brain temperature mapping with high-spatial- and reduced-spectral-resolution magnetic resonance spectroscopic imaging (MRSI). A secondary goal was to determine the temperature coefficient of water chemical shift in the brain with and without internal spectral reference. The accuracy of the proposed MRSI method was verified using a water and vegetable oil phantom. Selective decrease of the brain temperature of pigs was induced by intranasal cooling. Temperature reductions between 2°C and 4°C were achieved within 20 min. The relative changes in temperature during the cooling process were monitored using MRSI. The reference temperature was measured with MR-compatible fiber-optic probes. Single-voxel 1H MRS was used for measurement of absolute brain temperature at baseline and at the end of cooling. The temperature coefficient of the water chemical shift of brain tissue measured by MRSI without internal reference was −0.0192±0.0019 ppm/°C. The temperature coefficients of the water chemical shift relative to N-acetylaspartate, choline-containing compounds and creatine were −0.0096±0.0009, −0.0083±0.0007 and −0.0091±0.0011 ppm/°C, respectively. The results of this study indicate that MRSI with high spatial and reduced spectral resolutions is a reliable tool for monitoring long-term temperature changes in the brain.  相似文献   

7.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

8.
Existing evidence indicates that between 248°C and the melting point at 406°C, KOH is a rotator phase. We have shown that, as might be expected, this results in enhanced proton conductivity, and a value of 2×10−3 ohms−1 cm−1 was found at 350°C, which is the highest reported for proton conducting solid electrolytes in this temperature range. Excess protons are provided by water molecules residing on the normal OH- sites, and charge compensation is provided by CO2−3 ions in the solid solution of KOH(≈ 1 m/o K2CO3, 1.3m/o H2O). The activation energy for proton hopping between adjacent H2O and OH species probably accounts for most of the observed activation energy of 53±3 kJ mol−1. From TGA studies the isobars at 0.05 and 10 Torr were established for KOH-rich compositions in the KOH---H2O system, and it was shown that the rotator phase of KOH is stable between these vapour pressures.  相似文献   

9.
Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–gel technique using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [(ScNO3·6H2O)] in the solution. The influence of annealing temperature (300–550 °C) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.16° are obtained at an annealing temperature of 400 °C. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 °C exhibited minimum resistivity of 1.91 × 10−4 Ω cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 °C showed ultraviolet peak at 3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.  相似文献   

10.
Sputtered Cr/n-GaAs Schottky diodes have been prepared and annealed at 200 and 400 °C. The current–voltage (I–V) characteristics of the as-deposited and annealed diodes have been measured in the temperature range of 60–320 K with steps of 20 K. The effect of thermal annealing on the temperature-dependent I–V characteristics of the diodes has been investigated experimentally. The ideality factor and barrier height (BH) values for 400 °C annealed diode approximately remain unchanged from 120 to 320 K, and those of the as-deposited sample from 160 to 320 K. The departures from ideality at low temperatures have been ascribed to the lateral fluctuations of the BH. The BH values of 0.61 and 0.74 eV for the as-deposited and 400 °C annealed diodes were obtained at room temperature, respectively. A Richardson constant value of 9.83 A cm−2 K−2 for 400 °C annealed Schottky diode, which is in close agreement with the known value of 8.16 A cm−2 K−2 for n-type GaAs. Furthermore, T0 anomaly values of 15.52, 10.68 and 5.35 for the as-deposited and 200 and 400 °C annealed diodes were obtained from the nT versus T plots. Thus, it has been seen that the interface structure and quality improve by the thermal annealing at 400 °C.  相似文献   

11.
Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm−2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm−2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of −50 °C s−1 during the annealing cycle, 10–12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of −5 °C s−1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.  相似文献   

12.
Zirconium doped zinc oxide thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 400 °C, 450 °C and 500 °C using zinc and zirconium chlorides as precursors. The effect of zirconium dopant and surface roughness on the nonlinear optical properties was investigated using atomic force microscopy (AFM) and third harmonic generation (THG). The best value of susceptibility χ(3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ(3) = 20.49 × 10−12 (esu) of the studied films was found for the 5% doped sample at 450 °C.  相似文献   

13.
A thermo-optic switch in a thin-film optical waveguide was investigated. Fluorinated silicon oxide (SiOF) and organic spin-on-glass (SOG) films were used as core-layer and clad-layer, respectively, in the waveguide structure. The SiOF films were formed at 23#x00B0;C by a liquid-phase deposition (LPD) technique using a supersaturated hydrofluosilicic acid (H2SiF6) aqueous solution. Thermal coefficients of the refractive indices for LPD-SiOF and organic SOG films formed on silicon (Si) substrates were #x2212;4.0 #x00D7; 10#x2212;6/#x00B0;C, #x2212;60 #x00D7; 10#x2212;6/#x00B0;C at the wavelength of 632.8 nm, respectively. A high extinction ratio of 15 dB was obtained for this switch at the applied voltage of 12.8 V.  相似文献   

14.
Mechanical and electrical properties of silver stabilizer layer of coated conductor, which was prepared using nano silver paste as starting materials, have been investigated. Nano silver paste was coated on YBCO (Y1Ba2Cu3O7−δ) film by a dip coating method with a speed of 25 mm/min. Coated film was dried in air and heat treated at 400–700 °C in a flowing oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by Tape test (ASTM D 3359). The hardness and electrical conductivity of the sample were measured by pencil hardness test (ASTM D 3363). Surface and volume resistance were measured by using LORESTA-GP (MITSUBISHI). The sample heat treated at 500 °C showed poor adhesiveness of 1B but it is clearly enhanced to 5B when samples were heat treated at higher than 600 °C. The silver layer heat treated at 700 °C showed a high hardness value of higher than 9H and a volume resistance of 1.417 × 10−7 Ω mm at room temperature. SEM observations showed that a dense silver layer was formed with a thickness of about 2 μm. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics which is comparable to those that sputter deposited Ag layer.  相似文献   

15.
A pyrochlore-related Ce2Zr2O8−x phase has been prepared in a reduction reoxidation process from Ce0.5Zr0.5O2 powders. Ce2Zr2O8−x, based on a cubic symmetry with a=1.053 nm, decomposes in nitrogen at 800 °C, but remains stable up to 900 °C in air. It shows mixed oxygen ionic and electronic conductivity. The bulk conductivity at 700 °C is 4×10−4 S cm−1 in air and 1×10−2 S cm−1 in nitrogen, and the activation energy is 1.27 eV in air. In nitrogen, the Arrhenius law is not obeyed, and a curved plot was obtained from 400 to 700 °C; then, the conductivity decreased rapidly due to the thermal decomposition of Ce2Zr2O8−x.  相似文献   

16.
An optical method for directly measuring the thickness of a thin transparent film has been proposed by means of multi-wave laser interference at many incident angles, and confirmed experimentally by means of equipment made on an experimental basis. Two methods are available: one can be used when an index of refraction of the film, a wavelength λ, and two successive angles of incidence at which the sinusoidal light intensity has minimum values, are known (Method I), and another can be used without an index of film refraction when three successive angles of incidence and a wavelength are known (Method II). The smallest measurable thickness is 1.43λ for Method I, and 2.5λ for Method II. The largest measurable thickness is about 100λ for both methods. The measurement error by means of numerical calculation is Δh/h−1.01×10−2, and that obtained experimentally with an angular resolution of incident light of 0.3° is Δh/h7×10−2 for Method I. The refractive index can also be measured by means of Method II.  相似文献   

17.
An all-fibre optical system for optical interrogation and detection of the vibrations of a silicon microresonator is reported. Metal-coated silicon microresonators are excited by intensity modulated laser light delivered through an optical fibre, while the vibration of the resonators is detected by an optical fibre interferometer. Measurements have shown that an average optical power of 10 μW is sufficient to maintain the flexural vibration of the resonator. When the resonator is used as a pressure sensor, its resonant frequency changes from 62 kHz to 130 kHz as the pressure varies from -0°6 bar to 1 bar (gauge). A silicon resonator with 700 nm aluminium coating functions as a temperature sensor, showing a frequency shift from 262 kHz to 251 kHz when the temperature changes from 25 °C to 80 °C.  相似文献   

18.
The measurement of the 214Po concentration in air with Makrofol-DE detectors is useful to estimate the long-term averaged equilibrium factors indoors. To differentiate α-particles emitted by 214Po from those emitted by 218Po and 222Rn, the detector must register only α-particles with energies between 6.2 and 7.5 MeV. The required energy response is obtained only if a removed layer of about 43 μm is achieved in a chemical etching of the detector. The methodology used to determine the etching conditions is described in this paper. The optimum conditions found are: a) chemical etching for 6 h at a temperature of 40°C, using 7.5 M KOH mixed with 50% ethanol as an etchant, and b) electrochemical etching for 1 h at a frequency of 3 kHz and an electric field strength of 34 kV cm−1. Several dosimeters have exposed during 2 months in dwellings located in the Barcelona area, Spain. A 214Po averaged concentration of (13.6 ± 8.6) Bq m−3 was obtained.  相似文献   

19.
Viscous elongations of thin glass fibers have been automatically traced and recorded near their softening points using an optical, mechanical, and electronic method. The technique allows tracing to be obtained by applying external forces of less than 5 mg. Measurements were repeatable to within ±1−2°C; this repeatability was critically dependent on the uniformity of the glass fibre diameter.  相似文献   

20.
We have studied the effects of thermal annealing on the electrical properties of InAs/InP self-assembled quantum dots (QDs) using deep level transient spectroscopy (DLTS). It was found from the DLTS measurements that the activation energy of the QD signal varied from 0.47 to 0.60 eV and the emission cross section changed from 1.01×10−15 to 9.63×10−14 cm2 when the annealing temperature increased up to 700 °C. As a result of the thermal annealing process at the temperature ranging from 500 to 600 °C, the higher activation energy and the larger emission cross section of the QD related signal were observed for the annealed samples compared to those for the as-grown sample. On the basis of the capture barrier height for the QDs structure being lowered from 0.24 to 0.06 eV at the annealing temperature of 700 °C, thermal damage was considered as the reason. The appropriate annealing process can provide a clue for the engineering of the energy levels in the self-assembled QD structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号