首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of cholesterol with heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin (TOM-beta-CyD) was investigated in water using solubility method. It was found that TOM-beta-CyD forms two kinds of soluble complexes, with molar ratios of 1:1 and 1:2 (cholesterol:TOM-beta-CyD). The thermodynamic parameters for 1:1 and 1:2 complex formation of cholesterol with TOM-beta-CyD were: DeltaG0(1:1)=-11.0 kJ/mol at 25 degrees C (K1:1=7.70 x 10 M(-1)); DeltaH0(1:1)=-1.28 kJ/mol; TDeltaS0(1:1)=9.48 kJ/mol; DeltaG0(1:2)=-27.8 kJ/mol at 25 degrees C (K1:2)=7.55 x 10(4) M(-1)); DeltaH0(1:2)=-0.57 kJ/mol; TDeltaS0(1:1)=27.3 kJ/mol. The formation of the 1:2 complex occurred much more easily than that of the 1:1 complex. The driving force for 1:1 and 1:2 complex formation was suggested to be exclusively hydrophobic interaction. Based on the measurements of proton nuclear magnetic resonance spectra and studies with Corey-Pauling-Koltun atomic models, the probable structures of the 1:2 complex were estimated. In addition, the interaction of TOM-beta-CyD with cholesterol was compared with that of heptakis (2,6-di-O-methyl)-beta-CyD (DOM-beta-CyD). The interaction of TOM-beta-CyD is more hydrophobic than that of DOM-beta-CyD, and the life time of the complexed TOM-beta-CyD is sufficiently long to give separated signals, at the NMR time scale, which differs from that of complexed DOM-beta-CyD.  相似文献   

2.
R Kuhn 《Electrophoresis》1999,20(13):2605-2613
This paper reviews chiral separations of primary amines by capillary electrophoresis and crown ether as chiral selector. Two possible mechanisms of chiral recognition by host-guest complexation are discussed: (i) The substituents of the crown ether act as barriers for the guest compounds, and (ii) lateral electrostatic interactions between host and guest occur. Experimental conditions affecting the separation are discussed in detail. A literature overview of practical applications is presented as well. More than 80 different primary amines were analyzed, whereupon the majority could be resolved using a screening method. It is shown that a synergistic effect on the resolution of chiral amines is observed when the chiral crown ether and cyclodextrins are simultaneously used in the same buffer system. This approach opens interesting perspectives for further method optimization.  相似文献   

3.
The possible mechanisms of the opposite affinity pattern of the enantiomers of dimethindene [(R,S)-N,N-dimethyl-3[1(2-pyridyl)ethyl]indene-2-ethylamine] (DIM) towards native beta-cyclodextrin (beta-CD) and heptakis(2,3,6-tri-O-methyl-)-beta-CD (TM-beta-CD) were studied using capillary electrophoresis (CE), NMR spectrometry, electrospray ionization mass spectrometry (ESI-MS) and X-ray crystallography. NMR spectrometry allowed to estimate the stoichiometry of the complex and to determine the binding constants. As found using ESI-MS, together with more abundant 1:1 complex, a complex with 1:2 stoichiometry may also be present in a rather small amount in a solution of DIM and beta-CD. One-dimensional ROESY experiments indicated that the geometry of the complexes of DIM with native beta-CD depends on the ratio of the components in the solution. In the 1:1 solution of DIM and beta-CD the complex may be formed by inclusion of the indene moiety of DIM into the cavity of beta-CD on the primary side and into the cavity of TM-beta-CD into the secondary side. The most likely structural reason for lower affinity of the enantiomers of DIM towards the cavity of TM-beta-CD compared to native beta-CD could be elucidated. The indene moiety does not enter the cavity of TM-beta-CD as deeply as the cavity of beta-CD. This may be the most likely explanation of significantly higher affinity constants of DIM enantiomers towards the latter CD compared to the former one. The marked difference between the structure of the complexes may also be responsible for the opposite affinity pattern of the DIM enantiomers towards beta-CD and TM-beta-CD.  相似文献   

4.
The composition of 10 batches of heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (PM-CD) from different suppliers was determined by high-performance liquid chromatography combined with atmospheric pressure chemical ionisation mass spectrometry (MS). Considerable differences were found. Some batches consisted of more than 95% pure PM-CD, whereas others were not completely derivatised or contained a significant amount of by-products. Some suggestions about the structures of these impurities are given though neither nuclear magnetic resonance spectroscopy nor MS-MS investigations could completely reveal their nature. Capillaries for high-resolution gas chromatography were coated with the batches of most differing composition. They demonstrated widely varying column performance and separation properties for selected chiral polychlorinated substances such as chlordane compounds, o,p'-DDT, o,p'-DDD, alpha-hexachlorocyclohexane and atropisomeric polychlorinated biphenyls. The best enantioselectivity was obtained with the purest PM-CD. Compared to separations reported in the literature, a broader enantioselectivity was observed and also trans-heptachlor epoxide and oxychlordane could be resolved into enantiomers.  相似文献   

5.
A hepta-substituted beta-cyclodextrin bearing seven amino groups, heptakis(6-amino-6-deoxy)-beta-cyclodextrin (per-6-NH2-beta-CD) was successfully used as a chiral selector for the enantioseparation of different anionic analytes. The running buffer pH and chiral selector concentration were the studied parameters crucial in achieving the maximum possible enantioresolution. Enantiomeric separation of a mixture of seven carboxybenzyl-amino acids was achieved in 24 min. Excellent resolution was obtained for carboxybenzyl-tryptophan (Rs = 11.2).  相似文献   

6.
A reliable method is presented for the chiral separation of three basic drugs (mexiletine, chlorpheniramine and propranolol) with serum albumins (human and porcine, HSA and PSA) as chiral selectors by capillary electrophoresis in combination with the partial filling technique. Based on the systematic optimization of operation variables, the chiral separation of mexiletine, chlorpheniramine and propranolol was achieved in the pH 7.4 phosphate buffer by using HSA, PSA and PSA as selectors, respectively. The chiral recognition ability of HSA and PSA was compared. HSA and PSA show a different chiral recognition ability for each of the three drugs. In addition, the association constants between enantiomeric drugs and proteins were determined to be 2.00 and 3.80 x 10(2) M(-1) for mexiletine and HSA, 0.59 and 1.12 x 10(3) M(-1) for chlorpheniramine and PSA, and 0.87 and 1.42 x 10(3) M(-1) for propranolol and PSA. The method for the chiral separation and determination of association constants possesses the advantages of simple performance, effective avoiding of the interference of the UV detection from protein, and lowering of the reagent consumption.  相似文献   

7.
In the present work, we propose the use of direct coupling of a headspace sampler to a mass spectrometer for the detection of adulterants in olive oil. Samples of olive oils were mixed with different proportions of sunflower oil and olive-pomace oil, respectively, and patterns of the volatile compounds in the original and mixed samples were generated. Application of the linear discriminant analysis technique to the data from the signals was sufficient to differentiate the adulterated from the non-adulterated oils and to discriminate the type of adulteration. The results obtained revealed 100% success in classification and close to 100% in prediction. The main advantages of the proposed methodology are the speed of analysis (since no prior sample preparation steps are required), low cost, and the simplicity of the measuring process.  相似文献   

8.
A new beta-cyclodextrin (beta-CD) derivative, 2-O-(2-hydroxybutyl)-beta-CD (HB-beta-CD), was successfully synthesized and used as chiral selector in capillary zone electrophoresis. Six chiral drugs, such as anisodamine, ketoconazole, propranolol, promethazine, adrenaline and chlorphenamine enantiomers, belonging to different classes of compounds of pharmaceutical interest were resolved. The chiral resolution (R(S)) was strongly influenced by the concentrations of the cyclodextrin derivative, the background electrolyte, and the pH of the background electrolyte. Under the conditions of 50 mmol/L tris-phosphate buffer at pH 2.5 containing 5 mmol/L 2-O-(2-hydroxybutyl)-beta-CD, the baseline separation of enantiomers, such as anisodamine (R(S) = 3.10), ketoconazole (R(S) = 3.01), propranolol (R(S) = 3.87), promethazine (R(S) = 3.63), adrenaline (R(S) = 3.42) and chlorphenamine (R(S) = 2.96), could be achieved.  相似文献   

9.
Uncharged cyclodextrins were tested as chiral selectors for the enantiomeric separation of 13 glycyl dipeptides with capillary electrophoresis. Initial experiments were performed on 10 mmol/L of a cyclodextrin in 0.1 mol/L phosphoric acid -0.088 mol/L triethanolamine. Some of the resolved dipeptides were nonaromatic, which is noteworthy since, to our knowledge, no examples of the separation of small, nonaromatic molecules have been published. Mobility difference plots for Gly-DL-Leu and Gly-DL-Phe with heptakis(2,6-di-O-methyl)-beta-cyclodextrin showed relatively flat profiles in a large concentration range, which is an advantage for the development of robust quantitative analytical methods. The use of a background electrolyte (BGE) solution with pH 3.0 gave irreproducible results for two of the dipeptides, the acidic Gly-DL-Asp and Gly-DL-Glu; this pH is not advisable for the development of robust methods for these two peptides. The need for purer chiral selectors was demonstrated by comparing different batches of heptakis(2,6-di-Omethyl)-beta-cyclodextrin from the same supplier. A BGE consisting of malonic acid and triethanolamine was introduced to give better buffer capacity than the original BGE at pH 3.0.  相似文献   

10.
Dolezalová M  Fanali S 《Electrophoresis》2000,21(15):3264-3269
Capillary electrophoresis (CE) was successfully applied to the enantiomer resolution of racemic structurally related compounds, namely dihydroxyphenylalanine (DOPA), methyldihydroxyphenylalanine (MDOPA) and hydrazinomethyldihydroxyphenylalanine (CDOPA). The chiral resolution was performed in an untreated fused-silica capillary by using a phosphate buffer at pH 2.5 or 3.0 supplemented with sulfobutylated beta-cyclodextrin (SBE-CD). Resolution was strongly influenced by the concentration of the chiral selector added to the background electrolyte. In fact, 2-5 mM of SBE-CD enabled the resolution of DOPA and MDOPA enantiomers, while CDOPA optical isomers were resolved by using either 0.5 mM or 6-20 mM of SBE-CD. The latter separation conditions (reversed polarity mode) made it possible to obtain inversion of migration order.  相似文献   

11.
Wang J  Zheng G  Yang L  Sun W 《The Analyst》2001,126(4):438-440
A capillary electrophoresis method was developed for the enantioseparation of epoxide compounds. Sulfated beta-cyclodextrin was employed as a chiral selector. Phosphate-triethanolamine buffer showed a chiral separation effect when employing charged sulfated beta-cyclodextrin. The effect of pH, triethanolamine concentration and sulfated beta-cyclodextrin concentration on the resolution was studied. Methanol was tested as an organic modifier. Several other epoxides were successfully separated by the proposed method.  相似文献   

12.
13.
14.
Enantioseparations of fourteen dansyl amino acids were achieved by using a positively-charged single-isomer beta-cyclodextrin, mono-(3-methyl-imidazolium)-beta-cyclodextrin chloride, as a chiral selector. Separation parameters such as buffer pH, selector concentration, separation temperature, and organic modifier were investigated for the enantioseparation in order to achieve the maximum possible resolution. Chiral separation of dansyl amino acids was found to be highly dependent on pH since the degree of protonation of these amino acids can alter the strength of electrostatic interaction and/or inclusion complexation between each enantiomer and chiral selector. In general, the chiral resolution of dansyl amino acids was enhanced at higher pH, which indicates that the carboxylate group on the analytes may interact with the imidazolium group of cationic cyclodextrin. For most analytes, a distinct maximum in enantioresolution was obtained at pH 8.0. Moreover, the chiral separation can be further improved by careful tuning of the separation parameters such as higher selector concentration (e.g. 10 mM), lower temperature, and addition of methanol. Enantioseparation of a standard mixture of these dansyl amino acids was further achieved in a single run within 30 min.  相似文献   

15.
Eight neutral cyclodextrins were tested for the enantiomeric separation of alanyl and leucyl dipeptides by capillary electrophoresis at pH 3, and seven out of the eight cyclodextrins proved suitable for the separation of one or more of the dipeptide enantiomer pairs. The best results were obtained with heptakis(2,6-di-O-methyl)-beta-cyclodextrin. The dipeptides that were separated were mainly the aromatic and the more lipophilic aliphatic dipeptides. Mobility difference plots at pH 3.0 with malonic acid-triethanolamine as background electrolyte showed that the aromatic dipeptides had higher affinities for the cyclodextrin than the nonpolar, aliphatic dipeptides. The results suggested that, under the conditions applied, the C-terminal amino acid rather than the N-terminal one is involved in the chiral discrimination.  相似文献   

16.
A capillary zone electrophoresis (CZE) investigation on the enantiomeric separation of lomefloxacin, gatifloxacin, pazufloxacin and ofloxacin was undertaken. Resolution of the enantiomers was achieved using hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as the chiral selector. Parameters influencing separation include cyclodextrin concentration, separational potential, pH and organic additive are discussed. A buffer consisting of 70 mM phosphate and 40 mM HP-beta-CD at pH 3.96 was found to be highly efficient for the separation of lomefloxacin, at pH 3.90 for gatifloxacin, at pH 5.04 for pazufloxacin and at pH 2.16 for ofloxacin. To the best of our knowledge, this is the first report on the enantiomeric resolution of lomefloxacin and gatifloxacin applying CE.  相似文献   

17.
Capillary electrophoresis (CE) is a powerful technique for enantiomer separations due to its intrinsic high separation efficiencies, speed of analysis, low reagent consumption and small sample requirements. However, some chiral selectors present strong background UV absorption providing high detection limits. The present paper deals with the application of the partial-filling technique to the separation of bupivacaine enantiomers by capillary electrophoresis using human serum albumin (HSA) as chiral selector. In this procedure the cationic surfactant cetyltrimethylammonium bromide (CTAB) was used as a dinamic capillary coating in order to reduce the electro-osmotic flow and detect both bupivacaine enantiomers out of the chiral selector plug. Several experimental conditions such as CTAB concentration, pH, HSA concentration and plug length, background electrolyte concentration, temperature and voltage were studied. Under the selected conditions it is possible to detect the separated enantiomers out of the HSA plug in less than 4 min using 50 mM Tris pH 8 as background electrolyte with 50 microM CTAB, at 30 degrees C and using a separation voltage of 25 kV. The proposed methodology was then validated for analytical purposes and applied to the analysis of pharmaceutical preparations commercially available. The results obtained with the proposed methodology were in good agreement with those declared by the manufacturers. The simplicity, sample throughput, accuracy, reproducibility and low cost of the proposed method make it suitable for the control of the enantiomeric composition of bupivacaine in pharmaceuticals.  相似文献   

18.
The enantiomeric separation of a series of basic pharmaceuticals (beta-blockers, local anesthetics, sympathomimetics) has been investigated in nonaqueous capillary electrophoresis (NACE) systems using heptakis(2,3-di-O-methyl-6-O-sulfo)-beta-cyclodextrin (HDMS-beta-CD) in combination with potassium camphorsulfonate (camphorSO3-). For this purpose, a face-centered central composite design with 11 experimental points was applied. The effect of the concentrations of HDMS-beta-CD and camphorSO3- on enantioresolution was statistically evaluated and depended largely on the considered analyte. The presence of camphorSO3- was found to be particularly useful for the enantioseparation of compounds with high affinity for the anionic CD. CamphorSO3- seems to act as a competitor, reducing the affinity for the CD, probably by ion-pair formation with these analytes. For compounds with lower affinity for HDMS-beta-CD, the combination of camphorSO3- and the CD appeared to have a favorable effect on enantioresolution only if the optimal CD concentration could be reached. On the other hand, for compounds characterized by a very low affinity for the anionic CD, the association of camphorSO3- and HDMS-beta-CD is always unfavorable. Finally, experimental conditions were selected by means of the multivariate approach in order to obtain the highest resolution (Rs) value for each studied compound.  相似文献   

19.
Perfect control of electroosmotic flow (EOF) was achieved by dovetailing successive multiple ionic-polymer layer (SMIL) coated capillaries. The direction and magnitude of the EOF was perfectly controllable over the pH range 2-13. Zone diffusion was not observed, even if the inner wall of the dovetailed capillary was discontinuous, or if the sample zone passed through the connected part of the capillary because the RSDs of migration time, theoretical plates, symmetry factor and S/N of the marker were almost the same when seamless capillary and dovetailed capillary were compared. The dovetailed capillary was applied to cyclodextrin modified capillary zone electrophoresis. The control of the EOF enabled us to control both the resolution and the migration order of the enantiomers. The migration time was also controllable and, therefore, the best condition between separation and migration time could be determined by controlling the EOF. Partial filling affinity electrokinetic chromatography with a protein used as a chiral selector was also studied. The migration of the pseudostationary phase was controllable by EOF, and detection of the solute at 214 nm was possible. Therefore, the EOF-controlled dovetailed capillary has great potential to expand the application of the separation technique.  相似文献   

20.
Direct chiral separation of chiral peptide nucleic acid (PNA) monomers has been achieved for the first time by capillary electrophoresis (CE) with charged cyclodextrins as chiral selectors added to the electrophoretic buffer. Selectively modified 6-deoxy-6-N-histamino-beta-cyclodextrin and sulfobutyl ether-beta-CD were successfully used as chiral selectors for the enantiomeric separation of chiral monomers based on different aminoethylamino acids bearing thymine or adenine as nucleobases. Chiral separations were obtained at low selector concentrations (1-3 mM) with good enantioselectivity and resolution factors. Separations were optimized as a function of pH in order to exploit the effect of the electrostatic interactions between the oppositely charged selector and selectand. The method has been applied to the analysis of the enantiomeric excess of chiral monomers used for the solid phase synthesis of chiral PNA oligomers. CE chiral analysis showed that a very high enantiomeric purity was generally achieved in the synthesis of all monomers, except for histidine and aspartic acid based monomers in which ca. 10% of the "wrong" enantiomer was always present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号