首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non‐covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene‐1,3,5‐tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine‐free BTA co‐monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.  相似文献   

2.
We report quantum dynamical simulations for the laser controlled isomerization of 1-(2-cis-fluoroethenyl)-2-fluorobenzene based on one-dimensional electronic ground and excited state potentials obtained from (TD)DFT calculations. 1-(2-cis-fluoroethenyl)-2-fluorobenzene supports two chiral and one achiral atropisomers, the latter being the most stable isomer at room temperature. Using a linearly polarized IR laser pulse the molecule is excited to an internal rotation around its chiral axis, i.e. around the C-C single bond between phenyl ring and ethenyl group, changing the molecular chirality. A second linearly polarized laser pulse stops the torsion to prepare the desired enantiomeric form of the molecule. This laser control allows the selective switching between the achiral and either the left- or right-handed form of the molecule. Once the chirality is "switched on" linearly polarized UV laser pulses allow the selective change of the chirality using the electronic excited state as intermediate state.  相似文献   

3.
The structure of hydroxymethyl hydroperoxide (HOCH(2)OOH) (HMHP) has been examined using coupled cluster and multireference configuration interaction methods to study the excited states and probable photodissociation products. The results are compared to experiments. The vertical excitation energies for several excited states of HOCH(2)OOH are presented as well as the excited state energies along the O-O, O-H, C-O, and C-H dissociation pathways. The results help in the interpretation of experimental UV absorption spectra and elucidate the photodissociation mechanism of HMHP under tropospheric conditions.  相似文献   

4.
5.
The differences in chemical shift anisotropies, dipolar couplings, and quadrupolar couplings of two enantiomers in the chiral liquid crystalline media are employed to visualize enantiomers. In spite of the fact that proton has high magnetic moment and is abundantly present in all the chiral molecules, 1H NMR is not exploited to its full potential because of severe overlap of unresolved transitions arising from long- and short-distance couplings. Furthermore, the two spectra from R and S enantiomers result in doubling of the number of observable transitions. The present study demonstrates the application of the selectively excited homonuclear double quantum (DQ) coherence correlated to its single quantum coherence of an isolated methyl group in a chiral molecule. The DQ dimension retains only the passive couplings within the protons of the methyl group while the long-distance passive couplings are refocused, removing the overlap of central transitions, and each enantiomer displays a doublet instead of a triplet unlike in regular selective refocusing experiment. The doublet separation being different for each enantiomer results in their discrimination. The cross section taken along the single quantum dimension pertaining to each transition in the DQ dimension provides the one-dimensional spectra for each individual enantiomer with the complete removal of the overlapped transitions from the other enantiomer. The experiment is robust, the pulse sequence is easy to implement, and the methodology has been demonstrated on different chiral molecules.  相似文献   

6.
The formation of neutral I2 by the photodissociation of the methyl iodide dimer, (CH3I)2, excited within the A band at 249.5 nm is evaluated using velocity map imaging. In previous work [J. Chem. Phys. 122, 204301 (2005)], we showed that the formation of I2+ from photodissociation of the methyl iodide dimer takes place via ionic channels (through the formation of (CH3I)2+). It is thus not possible to detect neutral I2 by monitoring I2+. Neutral I2 is detected in this study by monitoring I atoms arising from the photodissociation of I2. Iodine atoms from I2 photodissociation have a characteristic kinetic energy and angular anisotropy, which is registered using velocity map imaging. We use a two-color probe scheme involving the photodissociation of nascent I2 at 499 nm, which gives rise to I atoms that are ionized by (2+1) resonance enhanced multiphoton ionization at 304.67 nm. Our estimate of the yield of nascent I2 is based on the comparison with the signal from I2 at a known concentration. Using molecular beams with a small fraction of CH3I (1% in the expanded mixture) where smaller clusters should prevail, the production of I2 was found to be negligible. An upper estimate for the quantum yield of I2 from (CH3I)2 dimers was found to be less than 0.4%. Experiments with a higher fraction of CH3I (4% in the expanded mixture), which favor the formation of larger clusters, revealed an observable formation of I2, with an estimated translational temperature of about 820 K. We suggest that this observed I2 signal arises from the photodissociation of several CH3I molecules in the larger cluster by the same UV pulse, followed by recombination of two nascent iodine atoms is responsible for neutral I2 production.  相似文献   

7.
A set of photodissociation experiments and simulations of hydrogen iodide (HI) on Arn clusters, with an average size n = 139, has been carried out for different laser polarizations. The doped clusters are prepared by a pick-up process. The HI molecule is then photodissociated by a UV laser pulse and the outgoing H fragment is ionized by resonance enhanced multiphoton ionization in a (2 + 1) excitation scheme within the same laser pulse at the wavelength of 243 nm. The measured time-of-flight spectra are transformed into hydrogen kinetic energy distributions. They exhibit a strong fraction of caged H atoms at zero-kinetic energy and peaks at the unperturbed cage exit for both spin-orbit channels nearly independent of the polarization. At this dissociation wavelength, the bare HI molecule exhibits a strict state separation, with a parallel transition to the spin-orbit excited state and perpendicular transitions to the ground state. The experimental results have been reproduced using molecular simulation techniques. Classical molecular dynamics was used to estimate the HI dopant distribution after the pick-up procedure. Subsequently, quasi-classical molecular dynamics (Wigner trajectories approach) has been applied for the photodissociation dynamics. The following main results have been obtained: (i) The HI dopant lands on the surface of the argon cluster during the pick-up process, (ii) zero-point energy plays a dominant role for the hydrogen orientation in the ground state of HI-Arn surface clusters, qualitatively changing the result of the photodissociation experiment upon increasing the number of argon atoms, and, finally, (iii) the scattering of hydrogen atoms from the cage which originate from different dissociation states seriously affects the experimentally measured kinetic energy distributions.  相似文献   

8.
We present a novel quantum-dynamics approach suitable for computing direct dissociation processes, including electronic transitions. This approach combines quantum trajectories in the Lagrangian reference frame with standard fixed-grid wave packets in order to overcome the limitations and difficulties of both techniques. As a model application, we consider the ultrafast photodissociation of H2 excited by a femtosecond extreme UV laser pulse.  相似文献   

9.
Enantiomeric L ‐ or D ‐glutamic acid based lipids were designed and their self‐assembly was investigated. It was found that at a certain concentration, either L ‐ or D ‐enantiomeric derivatives could self‐assemble in absolute alcohol to form a white organogel, which was composed of ultralong nanotubes with an aspect ratio higher than 1000. Further investigations revealed that these nanotubes were in chiral forms. The chirality of the nanotubes was determined by that of the enantiomers employed. In addition, when D and L enantiomers were mixed in different ratios, the nanotube could be tuned consecutively from nanotubes with a helical seam to nanotwists, the chirality of which being determined by the excess enantiomer in the mixed systems. In the case of an equimolar mixture of the enantiomers, flat nanoplates instead of helical nanotubes or nanotwists were obtained. The FTIR vibrational data and XRD layer‐distance values showed a consecutive change as a function of the enantiomeric excess. It was further revealed that the slightly stronger interaction between D –L enantiomeric pairs than that between D –D or L –L pairs was responsible for the formation of the diverse self‐assembled nanostructures.  相似文献   

10.
In recent years, the photodissociation dynamics of aryl halides has been a subject of intensive studies, which is closely related to the atmospheric chemistry. Here we present a review on the photochemistry of aryl halides, with emphasis on the recent progress in photodissociation dynamics at 266 nm by using photofragment translational spectroscopy. The ab initio calculations have also been employed to investigate those photodissociation processes. It has been found that the photodissociation of aryl halides at 266 nm is attributed to the nonadiabatic process via intersystem crossings from bound singlet excited state to triplet excited state and/or via internal conversion from bound singlet excited state to ground state. Also, the substitution effects in the photodissociation dynamics of aryl halides are discussed.  相似文献   

11.
An impurity produced in the synthesis of compound I is separated and identified as its enantiomer II using normal-phase chiral high-performance liquid chromatography (HPLC) with UV absorbance, optical rotation (OR) and mass spectrometric (MS) detection. The results show that the impurity II and compound I have equal and opposite specific rotations, identical MS spectra and the same MS-MS fragmentation pattern, as required for enantiomers. The procedures presented demonstrate a novel combination of methods for enantiomer identification and characterization that do not require the preparation of individual enantiomer markers or even the racemic mixture, thus reducing the need for additional synthetic work.  相似文献   

12.
An effective chiral stationary phase (CSP) for enantioseparation of amino acids was established previously by bonding (18-crown-6)-2, 3, 11, 12-tetracarboxylic acid to silica gel. This CSP has recently been commercialized under the name of Chirosil-SCA. As a first step for developing a Chirosil-SCA simulated moving bed chromatographic process for separation of tryptophan enantiomers, the adsorption isotherm and mass-transfer parameters of each tryptophan enantiomer on the Chirosil-SCA CSP were determined in this study while using only water as a mobile phase. For this task, inverse method (IM) was applied on the basis of the initial guesses estimated from elution by characteristic point (ECP) method, which was found to be more advantageous in the aspects of both accuracy and computational efficiency than the case of utilizing individually only IM or ECP method. The results revealed that the adsorption behavior of each tryptophan enantiomer on the Chirosil-SCA could be well described by the Langmuir-Freundlich isotherm. The model predictions based on the determined parameter values were in close agreement with the experimental chromatograms from a series of single-component or mixture pulse tests that were performed under various feed concentrations and flow rates. It was also found that the Langmuir-Freundlich isotherm parameters of each enantiomer were largely affected by temperature. Such a marked dependence of the parameters on temperature was investigated quantitatively. The results of such an investigation indicated that as the temperature decreases, the adsorption affinities of both enantiomers become higher and the heterogeneity of the Chirosil-SCA becomes more pronounced.  相似文献   

13.
We present theoretical considerations and quantitative numerical simulations of the coherent radiative excitation of chiral molecules exhibiting a double well potential in the electronic ground state (with stable enantiomers) and a harmonic oscillator potential with achiral minimum geometry in the excited electronic state following a scheme proposed in [33]. The one-dimensional short time dynamics is presented on the femtosecond time scale. We demonstrate the phenomena of quasiexponential, radiationless decay of the survival probability in the excited electronic state by simple harmonic oscillator wave packet motion, as well as coherent periodic chiral stereomutation. The differences and similarities of the excited state harmonic oscillator dynamics with two quite different ground state potentials are discussed. A designed pulse sequence allows for chemically efficient laser controlled stereomutation with high enantiomeric specificity. The results are discussed in relation to Friedrich Hund's early work on stereomutation by tunneling and in relation to our current understanding of chiral molecules including dynamical chirality and anharmonic vibrational dynamics on the femtosecond time scale and the violation of parity and other fundamental symmetries.  相似文献   

14.
A new representation of molecular chirality as a fixed-length code is introduced. This code describes chiral carbon atoms using atomic properties and geometrical features independent of conformation and is able to distinguish between enantiomers. It was used as input to counterpropagation (CPG) neural networks in two different applications. In the case of a catalytic enantioselective reaction the CPG network established a correlation between the chirality codes of the catalysts and the major enantiomer obtained by the reaction. In the second application-enantioselective reduction of ketones by DIP-chloride-the series of major and minor enantiomers produced from different substrates were clustered by the CPG neural network into separate regions, one characteristic of the minor products and the other characteristic of the major products.  相似文献   

15.
An application of a recently proposed [P. Kral et al., Phys. Rev. Lett. 90, 033001 (2003)] two step optical control scenario to the purification of a racemic mixture of 1,3 dimethylallene is presented. Both steps combine adiabatic and diabatic passage phenomena. In the first step, three laser pulses of mutually perpendicular linear polarizations, applied in a "cyclic adiabatic passage" scheme, are shown to be able to distinguish between the L and D enantiomers due to their difference in matter-radiation phase. In the second step, which immediately follows the first, a sequence of pulses is used to convert one enantiomer to its mirror-imaged form. This scenario, which only negligibly populates the first excited electronic state, proves extremely useful for systems such as dimethylallene, which can suffer losses from dissociation and internal conversion upon electronic excitation. We computationally observe conversion of a racemic mixture of dimethylallene to a sample containing approximately 95% of the enantiomer of choice.  相似文献   

16.
Molecular orbital theory and calculations are used to describe the ultraviolet singlet excited states of NO dimer. Qualitatively, we derive and catalog the dimer states by correlating them with monomer states, and provide illustrative complete active space self-consistent field calculations. Quantitatively, we provide computational estimates of vertical transition energies and absorption intensities with multireference configuration interaction and equations-of-motion coupled-cluster methods, and examine an important avoided crossing between a Rydberg and a valence state along the intermonomer and intramonomer stretching coordinates. The calculations are challenging, due to the high density of electronic states of various types (valence and Rydberg, excimer and charge transfer) in the 6-8 eV region, and the multiconfigurational nature of the ground state. We have identified a bright charge-transfer (charge-resonance) state as responsible for the broadband seen in UV absorption experiments. We also use our results to facilitate the interpretation of UV photodissociation experiments, including the time-resolved 6 eV photodissociation experiments to be presented in the next two papers of this series.  相似文献   

17.
Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.  相似文献   

18.
Programs of drug discovery generally exploit one enantiomer of a chiral compound for lead development following the principle that enantiomer recognition is central to biological specificity. However, chiral promiscuity has been identified for a number of enzyme families, which have shown that mirror‐image packing can enable opposite enantiomers to be accommodated in an enzyme's active site. Reported here is a series of crystallographic studies of complexes between an enzyme and a potent experimental herbicide whose chiral center forms an essential part of the inhibitor pharmacophore. Initial studies with a racemate at 1.85 Å resolution failed to identify the chirality of the bound inhibitor, however, by extending the resolution to 1.1 Å and by analyzing high‐resolution complexes with the enantiopure compounds, we determined that both enantiomers make equivalent pseudosymmetric interactions in the active site, thus mimicking an achiral reaction intermediate.  相似文献   

19.
姬磊  唐颖  朱荣淑  唐碧峰  张嵩  张冰 《化学学报》2004,62(13):1211-1216,J002
利用飞行时间质谱装置研究了234和267nm激光作用下二溴甲烷、二溴乙烷、二溴丙烷和二溴丁烷分子的光解离过程.研究表明二溴代烷烃分子在紫外激光的作用下主要是断裂C—Br键解离出一个Br原子,并且存在两种可能的布居:基态Br(^2P3/2^0)和激发态Br^*(^2P1/2^0).通过共振增强多光子电离技术探测两种光解产物布居的分支比.对比得到了分子构型对称性不同的二溴代烷烃的分支比,提出了两种假设的光解离模型.  相似文献   

20.
When they were independently tested, the enantiomers of N,N'-bis(salicylidene)-trans-1,2-cyclohexanediamine showed a large difference in adsorption on new chiral selectors using microbatch technology. Surprisingly, when these enantiomers were applied on the same supports as a racemic mixture, no discrimination was observed even though suitable adsorption existed. When a mixture enriched in one enantiomer (scalemic mixture) was applied, the resulting supernatant contained the racemic form and the enantiomer in excess was adsorbed on the support together with a part of racemate. This behavior, which militates in favor of a strong heterochiral dimer formation in the racemate, was revealed using microbatch technology but remained hidden on classical column chromatography on chiral support. Molecular dynamics calculations corroborate this hypothesis, showing a favorite binding mode of the heterochiral dimer, which is stabilized by various inter- and intramolecular interactions. Our findings may be considered as a new limitation of microbatch technology, but they may have some inference in case of chiral amplification using the N,N'-bis(salicylidene)-trans-1,2-cyclohexanediamine enantiomers as chiral ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号